已知F1、F2為橢圓
x2
25
+
y2
7
=1的左右焦點(diǎn),過(guò)F1的直線交橢圓于A、B兩點(diǎn),若|F2A|+|F2B|=13,則|AB|=
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓的定義得|AB|+|AF2|+|BF2|=20,結(jié)合若|F2A|+|F2B|=13,由此可求出|AB|的長(zhǎng).
解答: 解:由橢圓的定義得|AB|+|AF2|+|BF2|=20,
∵|F2A|+|F2B|=13,
∴|AB|+13=20,
∴|AB|=7.
故答案:7.
點(diǎn)評(píng):本題考查橢圓的基本性質(zhì)和應(yīng)用,解題時(shí)要注意公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)A(-1,0),B(1,0),C(m,n),且△ABC的周長(zhǎng)為2
2
+2.
(1)求證:點(diǎn)C在一個(gè)橢圓上運(yùn)動(dòng),并求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:mx+2ny-2=0.
①判斷直線l與(1)中的橢圓的位置關(guān)系,并說(shuō)明理由;
②過(guò)點(diǎn)A作直線l的垂線,垂足為H.證明:點(diǎn)H在定圓上,并求出定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人各進(jìn)行一次射擊,如果兩人擊中目標(biāo)的概率都是0.8,計(jì)算:
(1)兩人都擊中目標(biāo)的概率;
(2)兩人中恰有一人擊中目標(biāo)的概率;
(3)至少有一人擊中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|ax2-2x+2=0,x∈R}至多有一個(gè)元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={x|x>1},集合A⊆U.若∁UA={x|x>9},則集合A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,-1),
b
=(-2,1),則|2
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5名大人要帶兩個(gè)小孩排隊(duì)上山,小孩不排在一起也不排在頭、尾,則共有
 
種排法.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐P-ABCD的底面ABCD是正方形,且頂點(diǎn)P在底面ABCD的射影為底面的中心,若|AB|=a,棱錐體積為
6
6
a3
,則側(cè)棱AP與底面ABCD所成的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平行六面體ABCD-A1B1C1D1的所有棱長(zhǎng)均為2,∠A1AD=∠A1AB=∠DAB=60°,那么二面角A1-AD-B的余弦值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案