設直角三角形斜邊為c,直角邊分別為a,b,求證:log(b+c)a+log(c-b)a=2log(b+c)a•log(c-b)a.
考點:對數(shù)的運算性質
專題:函數(shù)的性質及應用
分析:利用對數(shù)的換底公式、對數(shù)的運算法則、勾股定理即可得出.
解答: 證明:左邊=
lga
lg(b+c)
+
lga
lg(c-b)
=
lga×lg(c2-b2)
lg(b+c)lg(c-b)
=
lga•lga2
lg(b+c)lg(c-b)
=2log(b+c)a•log(c-b)a=右邊,
∴等式成立.
點評:本題考查了對數(shù)的換底公式、對數(shù)的運算法則、勾股定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|x+1|,x≤0
|log2x|,x>0
,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+
1
x
2
3
x4
的取值范圍是( 。
A、(-1,+∞)
B、(-1,1]
C、(-∞,1)
D、[-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,收集數(shù)據(jù)如下:
實驗順序第一次第二次第三次第四次第五次
零件數(shù)x(個)1020304050
加工時間y(分鐘)6267758089
(Ⅰ)在5次試驗中任取2次,記加工時間分別為a,b,求事件:加工時間a,b均小于80分鐘的概率;
(Ⅱ)請根據(jù)第二次、第三次、第四次試驗的數(shù)據(jù),求出y關于x的線性回歸方程
y
=
b
x+
a
,參考公式如下:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,
a
=
.
y
-
b
.
x
,
.
x
=
x1+x2+…+xn
n
,
.
y
=
y1+y2+…+yn
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A、B、C、D是空間不共面的四點,且滿足AB⊥AC,AB⊥AD,AC⊥AD,則△BCD是( 。
A、鈍角三角形B、直角三角形
C、銳角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
(3-a)x+1,x<1
ax(a>0且a≠1),x≥1
,滿足對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0成立,那么a的取值范圍是( 。
A、(1,3)
B、(1,2]
C、[2,3)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:|
lg23-lg9+1
-3|結果是( 。
A、lg3-2
B、2-lg3
C、2+lg3
D、-2-lg3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(λ+2,λ2-
3
cos2α),
b
=(m,
m
2
+sinαcosα)其中λ,m,α為實數(shù).
(Ⅰ)若α=
π
12
,且
a
b
,求m的取值范圍;
(Ⅱ)若
a
=2
b
,求
λ
m
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
不共線,試判斷
a
+
b
a
-
b
是否共線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差為d(d≠0),等比數(shù)列{bn}的公比為q,a1=b1=1,a2=b2,a5=b3則公比q=
 

查看答案和解析>>

同步練習冊答案