【題目】已知棱長為1的正方體ABCDA1B1C1D1中,EF,M分別是線段ABAD、AA1的中點(diǎn),又P、Q分別在線段A1B1、A1D1上,且A1PA1Qx(0<x<1).設(shè)平面MEF∩平面MPQ

l,現(xiàn)有下列結(jié)論:

l∥平面ABCD

lAC;

③直線l與平面BCC1B1不垂直;

④當(dāng)x變化時(shí),l不是定直線.

其中不成立的結(jié)論是________.(寫出所有不成立結(jié)論的序號(hào))

【答案】

【解析】連接BDB1D1,A1PA1QxPQB1D1BDEF,PQ∥平面MEF,

又平面MEF平面MPQl,PQllEF,

l∥平面ABCD,故①成立;

EFAClAC,故②成立;

lEFBD,故直線l與平面BCC1B1不垂直,故③成立;

當(dāng)x變化時(shí),l是過點(diǎn)M且與直線EF平行的定直線,故④不成立.

即不成立的結(jié)論是④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C,其中e為橢圓離心率),焦距為2,過點(diǎn)M4,0)的直線l與橢圓C交于點(diǎn)A,B,點(diǎn)BAM之間.又點(diǎn)A,B的中點(diǎn)橫坐標(biāo)為

)求橢圓C的標(biāo)準(zhǔn)方程;

)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,二面角的大小為90°,, ,

1)求證: ;

2)試確定的值,使得直線與平面所成的角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若時(shí)取到極值,求的值及的圖象在處的切線方程;

(2)若時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,記點(diǎn)的軌跡為曲線.

(1)求點(diǎn)的軌跡方程;

(2)若圓心在曲線上的動(dòng)圓過點(diǎn),試證明圓軸必相交,且截軸所得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且以兩焦點(diǎn)為直徑的圓的內(nèi)接正方形面積為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于 兩點(diǎn),在軸上是否存在點(diǎn),使直線的斜率之和為定值?若存在,求出點(diǎn)坐標(biāo)及該定值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長的棱的棱長為( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=3,且an+1﹣3an=3n,(n∈N*),數(shù)列{bn}滿足bn=3﹣nan

(1)求證:數(shù)列{bn}是等差數(shù)列;

(2)設(shè),求滿足不等式的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案