精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)當a=0時,求證:f(x)≥0;
(Ⅱ)當x≥0時,若不等式f(x)≥0恒成立,求實數a的取值范圍;
(Ⅲ)若x>0,證明(ex﹣1)ln(x+1)>x2

【答案】解:(Ⅰ)a=0時,f(x)=ex﹣1﹣x, f′(x)=ex﹣1
當x∈(﹣∞,0)時,f'(x)<0;
當x∈(0,+∞)時,f'(x)>0
故在單調遞減,在單調遞增,
f(x)min=f(0)=0,∴f(x)≥0
(Ⅱ)f'(x)=ex﹣1﹣2ax,令h(x)=ex﹣1﹣2ax,則h'(x)=ex﹣2a.
1)當2a≤1時,在[0,+∞)上,h'(x)≥0,h(x)遞增,h(x)≥h(0),
即f'(x)≥f'(0)=0,∴f(x)在[0,+∞)為增函數,
∴f(x)≥f(0)=0,∴ 時滿足條件;
2)當2a>1時,令h'(x)=0,解得x=ln2a,
當x∈[0,ln2a)上,h'(x)<0,h(x)單調遞減,
∴x∈(0,ln2a)時,有h(x)<h(0)=0,即f'(x)<f'(0)=0,
∴f(x)在區(qū)間(0,ln2a)為減函數,
∴f(x)<f(0)=0,不合題意
綜上得實數a的取值范圍為
(Ⅲ)由(Ⅱ)得,當a= 時,x>0,ex>1+x+ ,即ex﹣1>x+ ,
欲證不等式(ex﹣1)ln(x+1)>x2 , 只需證ln(x+1)>
設F(x)=ln(x+1)﹣ ,則F′(x)= ,
∵x>0時,F′(x)>0恒成立,且F(0)=0,
∴F(x)>0恒成立.
所以原不等式得證
【解析】(Ⅰ)求出函數的導數,解關于x的不等式,求出函數的單調區(qū)間,得到函數的最小值,證出結論即可;(Ⅱ)求出函數的導數,通過討論a的范圍,求出函數的單調區(qū)間,根據
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減,以及對函數的最大(小)值與導數的理解,了解求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校有高中生1470人,現采用系統(tǒng)抽樣法抽取49人作問卷調查,將高一、高二、高三學生(高一、高二、高三分別有學生495人、493人、482人)按1,2,3,…,1470編號,若第一組用簡單隨機抽樣的方法抽取的號碼為23,則所抽樣本中高二學生的人數為

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,討論函數零點的個數;

(2)若,當=1時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資,根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資類產品的收益與投資額的算術平方根成正比已知投資1萬元時兩類產品的收益分別為0125萬元和05萬元

1分別寫出兩類產品的收益與投資額的函數關系;

2該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解學生喜歡校內、校外開展活動的情況,某中學一課外活動小組在學校高一年級進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數據按,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學生,低于60分的稱為類學生.

(1)根據已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學生有關系?

合計

110

50

合計

(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學生的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知在等腰梯形中,,,,,=60°,沿折成三棱柱

(1)若,分別為的中點,求證:∥平面;

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產甲、乙兩種產品所得利潤分別為(萬元),它們與投入資金(萬元)的關系有如下公式:,,今將200萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投入資金都不低于25萬元.

(Ⅰ)設對乙種產品投入資金(萬元),求總利潤(萬元)關于的函數關系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列

滿足:1(k=1,2,…,n-1).

對任意i,j,都存在s,t,使得,其中i,j,s,t{1,2,…,n}且兩兩不相等.

(I)若m=2,寫出下列三個數列中所有符合題目條件的數列的序號;

1,1,1,2,2,2; 1,1,1,1,2,2,2,2; 1,1,1,1,1,2,2,2,2

(II)記.若m=3,求S的最小值;

(III)若m=2018,求n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知變量之間的線性回歸方程為,且變量之間的一組相關數據如表所示,則下列說法錯誤的是( 。

x

6

8

10

12

y

6

m

3

2

A. 變量之間呈現負相關關系

B. 的值等于5

C. 變量之間的相關系數

D. 由表格數據知,該回歸直線必過點(9,4)

查看答案和解析>>

同步練習冊答案