【題目】如圖,已知在等腰梯形中,,,=60°,沿折成三棱柱

(1)若,分別為,的中點(diǎn),求證:∥平面;

(2)若,求二面角的余弦值

【答案】(1)見(jiàn)解析;(2)

【解析】

分析:(1)取的中點(diǎn),連接,,在三角形中,得到,證得平面,又由分別為,的中點(diǎn)證得平面,即可證得面平面,利用面面平行的性質(zhì),即可得到平面.

(2)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.

詳解:(1)取的中點(diǎn),連接,,在三角形中,

,分別為,的中點(diǎn),∴

平面,平面,∴平面.

由于分別為,的中點(diǎn),由棱柱的性質(zhì)可得,

平面平面,∴平面.

平面,平面,

∴平面平面,∵平面

平面.

(2)連接,在中,,,

,又,

,∴,又

平面.

建立如圖所示的空間直角坐標(biāo)系,

可得,,,

,.

設(shè)平面的法向量為,

,則,令

,則為平面的一個(gè)法向量,

設(shè)平面的法向量為,則

,令,得,

為平面的一個(gè)法向量.

設(shè),所成角為,則,

由圖可知二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù).

x

4

5

7

8

y

2

3

5

6

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△中,已知,直線經(jīng)過(guò)點(diǎn)

(Ⅰ)若直線:與線段交于點(diǎn),且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn). (Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A﹣A1B﹣C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)當(dāng)a=0時(shí),求證:f(x)≥0;
(Ⅱ)當(dāng)x≥0時(shí),若不等式f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若x>0,證明(ex﹣1)ln(x+1)>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,則不等式fx-2+fx2-4)<0的解集為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱,且當(dāng)x(-∞,0)時(shí),成立,(其中f′(x)f(x)的導(dǎo)數(shù));若, ,,則a,b,c的大小關(guān)系是(

A. a>b>c B. b>a>c C. c>a>b D. c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程(x﹣1)4+mx﹣m﹣2=0各個(gè)實(shí)根x1 , x2…xk(k≤4,k∈N*)所對(duì)應(yīng)的點(diǎn)(xi),(i=1,2,3…k)均在直線y=x的同側(cè),則實(shí)數(shù)m的取值范圍是(  )
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 的方程為,點(diǎn)的坐標(biāo)為.

(1)求過(guò)點(diǎn)且與直線平行的直線方程;

(2)求過(guò)點(diǎn)且與直線垂直的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案