已知橢圓E:的焦點坐標為),點M(,)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于兩點,求線段中點的軌跡方程;
(1)  (2)

試題分析:解: (Ⅰ)∵橢圓E: (a,b>0)經(jīng)過M(-2,) ,一個焦點坐標為),
 ,橢圓E的方程為;     5分
(Ⅱ)當直線的斜率存在時,設直線與橢圓E的兩個交點為A(),B(),相交所得弦的中點,∴ ,
①-②得,,
∴弦的斜率,
四點共線,∴,即,
經(jīng)檢驗(0,0),(1,0)符合條件,
∴線段中點的軌跡方程是.    12分
點評:解決該試題的關鍵是對于性質(zhì)的準確表示得到a,b,c的值,進而得到方程,同時聯(lián)立方程組結(jié)合韋達定理以及斜率公式求解得到軌跡方程,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,橢圓C方程為 (),點為橢圓C的左、右頂點。

(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標準方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足,求證:直線過定點,并求出該點的坐標。 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點在橢圓C 上,且橢圓C的離心率

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作直線交橢圓C于點A.B.ABQ的垂心為T,是否存在實數(shù)m ,使得垂心Ty軸上.若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢圓長軸的一個頂點作圓的兩條切線,切點分別為,若 (是坐標原點),則橢圓的離心率為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列雙曲線中,漸近線方程是的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左右焦點為,弦過點,若△的內(nèi)切圓周長為,點坐標分別為,則            。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

焦點為(0,6)且與雙曲線有相同的漸近線的雙曲線方程是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案