精英家教網 > 高中數學 > 題目詳情
(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.
x=0或y=3或

試題分析:
解析:若直線l的斜率不存在,則直線l的方程為x=0,滿足條件
②⑤當直線l的斜率存在,不妨設ly=kx+3,代入y2 =2x,得:k2x2 +(6k-2) x+9=0
有條件知,當k=0時,即:直線y=3與拋物線有一個交點
k≠0時,由△= (6k-2)2 -4×9×k2=0,解得:k=,則直線方程為
故滿足條件的直線方程為:x=0或y=3或
點評:易錯點就是考慮情況不全面,造成的丟解的問題,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點為F(1,0),離心率為,P為左頂點。
(1)求橢圓C的方程;
(2)設過點F的直線交橢圓C于A,B兩點,若△PAB的面積為,求直線AB的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知直線經過橢圓的左頂點A和上頂點D,橢圓的右頂點為,點和橢圓上位于軸上方的動點,直線,與直線分別交于兩點。

(I)求橢圓的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當線段MN的長度最小時,在橢圓上是否存在這
樣的點,使得的面積為?若存在,確定點的個數,若不存在,說明理由

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果過曲線上點處的切線平行于直線,那么點的坐標為
A.B.C.D.(

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓E:的焦點坐標為),點M()在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于兩點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓M的中心為坐標原點,且焦點在x軸上,若M的一個頂點恰好是拋物線的焦點,M的離心率,過M的右焦點F作不與坐標軸垂直的直線,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且,求實數t的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標系中,點到兩定點F1和F2的距離之和為,設點的軌跡是曲線.(1)求曲線的方程;   (2)若直線與曲線相交于不同兩點(、不是曲線和坐標軸的交點),以為直徑的圓過點,試判斷直線是否經過一定點,若是,求出定點坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線的焦距為10,點在其漸近線上,則雙曲線的方程為
A.B.C.D.

查看答案和解析>>

同步練習冊答案