精英家教網 > 高中數學 > 題目詳情
過橢圓長軸的一個頂點作圓的兩條切線,切點分別為,若 (是坐標原點),則橢圓的離心率為_________.
令這個頂點是H。由題意知,是等腰直角三角形,其中,又OA=b,可求得,由得,c=b,所以。
試題分析:
點評:關于曲線的題目,一般都是通過畫圖找出里面的關系。本題還需要注意關系式,不要跟雙曲線的關系式混淆。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心為坐標原點,一個長軸端點為,短軸端點和焦點所組成的四邊形為正方形,若直線軸交于點,與橢圓交于不同的兩點,且。(14分)
(1)求橢圓的方程;
(2)求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系中,以O為極點,軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為,曲線的參數方程為,(為參數,)。
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)當C1與C2有兩個公共點時,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓,F1,F2為其左、右焦點,P為橢圓C上任一點,的重心為G,內心I,且有(其中為實數),橢圓C的離心率e=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓E:的焦點坐標為),點M(,)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于兩點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知、為橢圓的兩個焦點,過作橢圓的弦,若的周長為,則該橢圓的標準方程為     .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知為橢圓的兩個焦點,過的直線交橢圓于兩點。若,則=          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設斜率為2的直線l過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率e的取值范圍是(   )
A.e>B.e>C.1<e<D.1<e<

查看答案和解析>>

同步練習冊答案