【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,將曲線繞極點(diǎn)順時(shí)針旋轉(zhuǎn)后得到曲線的曲線記為.
(1)求曲線和的極坐標(biāo)方程;
(2)設(shè)和的交點(diǎn)為,,求的長(zhǎng)度.
【答案】(1);(2)
【解析】
(1)利用求得的普通方程,然后根據(jù)極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)換公式,求得曲線的極坐標(biāo)方程.將代入曲線的極坐標(biāo)方程,求得的極坐標(biāo)方程.
(2)由(1)求得的普通方程,由此求得相交弦所在直線方程,根據(jù)點(diǎn)到直線的距離公式以及勾股定理,求得.
(1)曲線的參數(shù)方程為(為參數(shù)),即
平方相加得的普通方程為:(或).
∵,得曲線的極坐標(biāo)方程為,
任取上一點(diǎn)極坐標(biāo)為,由題意有在曲線上,
代入有極坐標(biāo)方程為.
(2)由(1)知的極坐標(biāo)方程為,即,
所以的普通方程為:,
聯(lián)立與方程可得直線的方程為:,的圓心為,半徑為2,且圓心到直線的距離為1,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求在點(diǎn)處的切線;
(2)研究函數(shù)的單調(diào)性,并求出極值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,,分別為,的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某苗木基地常年供應(yīng)多種規(guī)格的優(yōu)質(zhì)樹苗.為更好地銷售樹苗,建設(shè)生態(tài)文明家鄉(xiāng)和美好家園,基地積極主動(dòng)地聯(lián)系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購(gòu)買合同的概率分別、、,且基地是否得到三家公司的購(gòu)買合同是相互獨(dú)立的.
(1)若公司甲計(jì)劃與基地簽訂300棵銀杏實(shí)生苗的銷售合同,每棵銀杏實(shí)生苗的價(jià)格為90元,栽種后,每棵樹苗當(dāng)年的成活率都為0.9,對(duì)當(dāng)年沒(méi)有成活的樹苗,第二年需再補(bǔ)種1棵.現(xiàn)公司甲為苗木基地提供了兩種售后方案,
方案一:公司甲購(gòu)買300棵銀杏樹苗后,基地需提供一年一次,共計(jì)兩年的補(bǔ)種服務(wù),且每次補(bǔ)種人工及運(yùn)輸費(fèi)用平均為800元;
方案二:公司甲購(gòu)買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,后期的移栽培育工作由公司甲自行負(fù)責(zé).
若基地首次運(yùn)送方案一的300棵樹苗及方案二的360棵樹苗的運(yùn)費(fèi)及栽種費(fèi)用合計(jì)都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?
(2)記為該基地得到三家公司購(gòu)買合同的個(gè)數(shù),若,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,它的體積是底面△ABC中,∠BAC=90°,AB=4,AC=3,在底面的射影是D,且D為BC的中點(diǎn).
(1)求側(cè)棱與底面ABC所成角的大小;
(2)求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為2的正方形,平面,且.
(Ⅰ)求證:平面平面;
(Ⅱ)線段上是否存在一點(diǎn),使二而角等于45°?若存在,請(qǐng)找出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若是的極大值點(diǎn),求的取值范圍;
(2)當(dāng),時(shí),方程(其中)有唯一實(shí)數(shù)解,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知().
(Ⅰ)判斷當(dāng)時(shí)的單調(diào)性;
(Ⅱ)若,()為兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com