【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見解析(Ⅱ)

【解析】試題分析:(Ⅰ) ,結(jié)合定義域討論導(dǎo)數(shù)的正負(fù)求單調(diào)區(qū)間即可;

(Ⅱ)當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.所以上有零點(diǎn)的必要條件是,得,討論時(shí)函數(shù)單調(diào)性求解參數(shù)范圍即可.

試題解析:

解:(Ⅰ)函數(shù)的定義域?yàn)?/span>,

.

.

當(dāng)時(shí), 上恒成立,

所以的單調(diào)遞減區(qū)間是,沒有單調(diào)遞增區(qū)間.

當(dāng)時(shí), 的變化情況如下表:

所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

當(dāng)時(shí), 的變化情況如下表:

所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

(Ⅱ)當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

所以上有零點(diǎn)的必要條件是,

,所以.

,所以.

上是減函數(shù), 上沒有零點(diǎn).

, 上是增函數(shù),在上是減函數(shù),

所以上有零點(diǎn)等價(jià)于,

,解得.

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為△ABC的重心,∠BOC=90°,若4BC2=AB·AC,則A的大小為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型娛樂場有兩種型號(hào)的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟(jì)收入情況,對(duì)該場所最近6年水上摩托的使用情況進(jìn)行了統(tǒng)計(jì),得到相關(guān)數(shù)據(jù)如表:

(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測該娛樂場2018年水上摩托的使用率;

(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據(jù)自身的發(fā)展需要,準(zhǔn)備重新購進(jìn)一批水上摩托,其型號(hào)主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價(jià)格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗(yàn),每輛水上摩托的使用年限不超過四年.娛樂場管理部對(duì)已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進(jìn)行統(tǒng)計(jì),使用年限如條形圖所示:

已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤=收益-購車成本)的期望值為參考值,則該娛樂場的負(fù)責(zé)人應(yīng)該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?

附:回歸直線方程為,其中, .參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ex(x∈R,且e為自然對(duì)數(shù)的底數(shù)).

(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;

(2)是否存在實(shí)數(shù)t,使不等式f(xt)+f(x2t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2xcos2x2sinx cosxxR).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中為自然對(duì)數(shù)的底數(shù).

(1)若,求曲線在點(diǎn)處的切線斜率;

(2)證明:當(dāng)時(shí),函數(shù)有極小值,且極小值大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年4月1日,新華通訊社發(fā)布:國務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點(diǎn).

(1)為了響應(yīng)國家號(hào)召,北京市某高校立即在所屬的8個(gè)學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問卷調(diào)查,8個(gè)學(xué)院的調(diào)查人數(shù)及統(tǒng)計(jì)數(shù)據(jù)如下:

調(diào)查人數(shù)()

10

20

30

40

50

60

70

80

愿意整體搬遷人數(shù)()

8

17

25

31

39

47

55

66

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線性回歸方程保留小數(shù)點(diǎn)后兩位有效數(shù)字);若該校共有教職員工2500人,請(qǐng)預(yù)測該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);

(2)若該校的8位院長中有5位院長愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長中隨機(jī)選取4位院長組成考察團(tuán)赴雄安新區(qū)進(jìn)行實(shí)地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長人數(shù),求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù): .

查看答案和解析>>

同步練習(xí)冊(cè)答案