已知橢圓C:=1(a>b>0)的離心率為,一條準(zhǔn)線l:x=2.

(1)求橢圓C的方程;

(2)設(shè)O為坐標(biāo)原點,M是l上的點,F(xiàn)為橢圓C的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓D交于P,Q兩點.

①若PQ=,求圓D的方程;

②若M是l上的動點,求證點P在定圓上,并求該定圓的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年泉州一中適應(yīng)性練習(xí)文)(12分)已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標(biāo)原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北重點中學(xué)4月月考理)(13分

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB

(1)求直線ONO為坐標(biāo)原點)的斜率KON ;

1)           (2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標(biāo)原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標(biāo)原點)的斜率KON

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北省武漢市高三9月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當(dāng)l的斜率為1時,坐標(biāo)原點O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案