已知函數(shù) (x∈R,且x≠2).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)與函數(shù)在x∈[0,1]上有相同的值域,求a的值.
(1)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(2)

試題分析:解題思路(1)分離參數(shù)轉(zhuǎn)化從基本不等式求最值;(2)由(1)得出的值域,再利用一元二次函數(shù)的單調(diào)性求值.規(guī)律總結(jié):涉及分式求最值,往往利用分離參數(shù)法,出現(xiàn)定值,以便運(yùn)用基本不等式求解;求一元二次函數(shù)的值域要注意運(yùn)用數(shù)形結(jié)合思想.
試題解析:(1),
,由于內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,∴容易求得的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為
(2)∵上單調(diào)遞減,∴其值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824055529288380.png" style="vertical-align:middle;" />,
時(shí),
為最大值,∴最小值只能為
,則;若,則;
綜上得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對(duì)任意,,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別為P(單位:萬(wàn)元)和Q(單位:萬(wàn)元),它們與投入資金(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式, .  今將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資(單位:萬(wàn)元)
(1)試建立總利潤(rùn)(單位:萬(wàn)元)關(guān)于的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何投資經(jīng)營(yíng)甲、乙兩種商品,才能使得總利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

命題:“存在x0∈R,sinxo=2”的否定是( 。
A.不存在x0∈R,sinxo≠2B.存在x0∈R,sinxo≠2
C.對(duì)任意x∈R,sinx≠2D.對(duì)任意x∈R,sinx=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,制圖工程師要用兩個(gè)同中心的邊長(zhǎng)均為4的正方形合成一個(gè)八角形圖形.由對(duì)稱(chēng)性,圖中8個(gè)三角形都是全等的三角形,設(shè)

(1)試用表示的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時(shí)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車(chē)的車(chē)流量(千輛/時(shí))與汽車(chē)的平均速度(千米/時(shí))之間的函數(shù)關(guān)系為).
(1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度為多少時(shí),車(chē)流量最大?最大車(chē)流量為多少?
(2)若要求在該時(shí)段內(nèi)車(chē)流量超過(guò)千輛/時(shí),則汽車(chē)的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

的定義域?yàn)?u>     ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=-sin x+2的最大值是 (       ).
A.2B.3C.4 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則          .

查看答案和解析>>

同步練習(xí)冊(cè)答案