已知數(shù)列{an}的通項公式為an=
9
2
-n,Sn是{an}的前n項的和.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求Sn的最大值以及相應的n的值.
考點:等差數(shù)列的性質(zhì),等差數(shù)列的前n項和,等差關系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)易得an+1-an=-1,由等差數(shù)列的定義可得;
(2)由求和公式易得Sn=-
1
2
(n-4)2+8,由二次函數(shù)可得.
解答: (1)證明∵an+1-an=
9
2
-(n+1)-
9
2
+n=-1,
∴數(shù)列{an}是公差為1的等差數(shù)列
(2)由(1)知a1=
7
2
,d=-1,
∴Sn=
7
2
n-
n(n-1)
2
=-
1
2
n2+4n

=-
1
2
(n-4)2+8,
∴由二次函數(shù)可知當n=4時,Sn取最大值8
點評:本題考查等差數(shù)列的性質(zhì)和求和公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若一條直線與兩個平行平面中的一個平面平行,則這條直線與另一個平面的位置關系是( 。
A、平行B、相交
C、直線在平面內(nèi)D、平行或直線在平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個玩具的各個面上分別寫著數(shù)字1,2,3,5.同時投擲這兩枚玩具一次,記m為兩個下的面上的數(shù)字之和.
(Ⅰ)求事件“m不小于6”的概率;
(Ⅱ)求事件“m為奇數(shù)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的三個頂點分別是A(1,-1,2),B(5,-6,2),C(1,3,-1),則AC邊上的高BD長為( 。
A、5
B、
41
C、4
D、2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的等比數(shù)列{an},若2a4+a3-2a2-a1=8,則2a6+a5的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),f(
1
2
)=1,如果對于0<x<y,都有f(x)>f(y)
(1)求f(1),f(4);
(2)解不等式f(-x)+f(3-x)≥-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x(x-1)<0的解集是( 。
A、{x|x<0}
B、{x|x<1}
C、{x|0<x<1}
D、{x|x<0或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=2x+1.則f(-lo
g
3
2
)
=(  )
A、-4B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log3(x2+2x-3)的單調(diào)遞增區(qū)間為:
 

查看答案和解析>>

同步練習冊答案