分析 (1)三棱錐D'-A'AE的體積V=$\frac{1}{3}×{S}_{△A{A}^{'}E}×{A}^{'}{D}^{'}$,由此能求出結(jié)果.
(2)取CC′中點G,連接DG,推導(dǎo)出D'M⊥DG,EG⊥D'M,從而D'M⊥平面DEG,由此能證明D'M⊥DE.
解答 解:(1)∵在棱長為1的正方體ABCD-A'B'C'D'中,E為棱BB'的中點,
∴${S}_{△A{A}^{'}E}$=$\frac{1}{2}×1×1$=$\frac{1}{2}$,A′D′=1,
∴三棱錐D'-A'AE的體積:
V=$\frac{1}{3}×{S}_{△A{A}^{'}E}×{A}^{'}{D}^{'}$=$\frac{1}{3}×\frac{1}{2}×1$=$\frac{1}{6}$.…(2分)
故答案為:$\frac{1}{6}$.
證明:(2)點M是棱CD上的中點,
取CC′中點G,連接DG,
則△D′DM≌△DCG,$∠D'MD+∠CDG=\frac{π}{2}$
∴D'M⊥DG,
又∵EG∥BC,EG⊥D'M,且DG∩EG=G
∴D'M⊥平面DEG,DE?平面DEG,∴D'M⊥DE.…(5分)
點評 本題考查三棱錐的體積的求法,考查線線垂直的證明,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,+∞) | C. | [1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | [-1,1] | C. | (-1,1) | D. | [1,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com