分析 由橢圓$\frac{x^2}{12}+\frac{y^2}{9}=1$,設P(2$\sqrt{3}$cosθ,3sinθ),利用兩點之間的距離公式、三角函數(shù)的單調(diào)性即可得出.
解答 解:由橢圓$\frac{x^2}{12}+\frac{y^2}{9}=1$,設P(2$\sqrt{3}$cosθ,3sinθ),
則|PA|=$\sqrt{12co{s}^{2}θ+(3sinθ-\frac{1}{2})^{2}}$=$\sqrt{\frac{49}{4}-3si{n}^{2}θ-3sinθ}$=$\sqrt{13-3(sinθ+\frac{1}{2})^{2}}$$≤\sqrt{13}$,
當且僅當sin$θ=-\frac{1}{2}$時取等號.
因此其最大值為$\sqrt{13}$.
故答案為:$\sqrt{13}$
點評 本題考查了橢圓的參數(shù)方程、兩點之間的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=sin(2x-$\frac{π}{4}$) | B. | f(x)=sin(2x+$\frac{π}{4}$) | C. | f(x)=sin(4x+$\frac{π}{4}$) | D. | f(x)=sin(4x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\lim_{n→+∞}{S_n}=-1$ | |
B. | $\lim_{n→+∞}{S_n}=2015$ | |
C. | $\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*) | |
D. | 以上結論都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 右移$\frac{π}{3}$ | B. | 左移$\frac{π}{3}$ | C. | 右移$\frac{π}{6}$ | D. | 左移$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com