下列說法:
①“若tanA+tanB+tanC>0,則△ABC是銳角三角形”是真命題;
②“若x=y,則sinx=siny”的逆命題為真命題;
③sin4>cos4;
④函數(shù)f(x)=|sinx|+|cosx|的最小正周期是π;
⑤在△ABC中,∠A<∠B是cos2A>cos2B的充要條件;
其中錯誤的是
 
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:利用兩角和的正切函數(shù)判斷①的正誤;通過特例判斷②的正誤;利用三角函數(shù)的圖象與性質(zhì)判斷③的正誤;利用三角函數(shù)的周期判斷④的正誤;利用三角函數(shù)以及充要條件判斷⑤的正誤;
解答: 解:對于①,∵tanA+tanB=tan(A+B)(1-tanAtanB),
∴tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tanAtanBtanC>0,
∴A,B,C是△ABC的內(nèi)角,故內(nèi)角都是銳角,∴①正確;
對于②,若x=y,則sinx=siny”的逆命題為:“sinx=siny”則“x=y”,
∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°∴②不正確;
對于③,∵
4
<4<
2
,由正弦函數(shù)以及余弦函數(shù)的圖象可知,sin4<cos4,∴③不正確;
對于④,函數(shù)f(x)=|sinx|+|cosx|的最小正周期是
π
2
,∴④不正確;
對于⑤,cos2B>cos2A
?1-2sin2B>1-2sin2A
?sin2B<sin2A
?sinA>sinB
?A>B.
故A>B是cos2B>cos2A的充要條件.∴⑤正確;
故答案為:②③④.
點評:本題考查兩角和的正切公式以及三角函數(shù)的符號,三角函數(shù)的圖象與性質(zhì)的應(yīng)用,充要條件的判斷,考查學(xué)生訓(xùn)練運用公式熟練變形的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=-
1
4
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)x∈[0,+∞)時,不等式f(x)-x≤0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的中心在原點,焦點在x軸上,離心率為
2
,且經(jīng)過點(4,-
10
).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)F1、F2為雙曲線C的左、右焦點,若雙曲線C上一點M滿足F1M⊥F2M,求△MF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x+4
-3
x-5
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示
用煤(噸) 用電(千瓦) 產(chǎn)值(萬元)
甲產(chǎn)品 5 10 4
乙產(chǎn)品 6 20 6
但該廠每天可用的煤、電有限,每天供煤至多50噸,供電至多140千瓦,該廠最大日產(chǎn)值為
 
萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如所示框圖,若f(x)=3x2-1,取?=0.1,則輸出的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面α外一點,O是點P在平面α內(nèi)的射影
(1)若P到△ABC的三個頂點的距離相等,則O是△ABC外心;
(2)若PA、PB、PC與平面α所成的角相等,則O是△ABC的內(nèi)心;
(3)若P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,則O是△ABC的內(nèi)心;
(4)若平面PAB、PBC、PCA與平面α所成的角相等,且O在△ABC的內(nèi)部,則O是△ABC的外心;
(5)若PA、PB、PC兩兩垂直,則O是△ABC的垂心.
其中正確命題的序號是
 
(把你認(rèn)為正確命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于四面體ABCD,以下命題中,真命題的序號為
 
(填上所有真命題的序號)
①若AB=AC,BD=CD,E為BC中點,則平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,則BD⊥AC;
③若所有棱長都相等,則該四面體的外接球與內(nèi)切球的半徑之比為2:1;
④若以A為端點的三條棱所在直線兩兩垂直,則A在平面BCD內(nèi)的射影為△BCD的垂心;
⑤分別作兩組相對棱中點的連線,則所得的兩條直線異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所不的程序框圖,則輸出的x的值是( 。
A、3B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊答案