【題目】己知無窮數(shù)列的前項(xiàng)和為,若對于任意的正整數(shù),均有,則稱數(shù)列具有性質(zhì).

1)判斷首項(xiàng)為,公比為的無窮等比數(shù)列是否具有性質(zhì),并說明理由;

2)己知無窮數(shù)列具有性質(zhì),且任意相鄰四項(xiàng)之和都相等,求證:;

3)己知,數(shù)列是等差數(shù)列,,若無窮數(shù)列具有性質(zhì),求的取值范圍.

【答案】1)答案見解析(2)證明見解析(3

【解析】

1)因?yàn)槭醉?xiàng)為,公比為的無窮等比數(shù)列,即可,,即可求得答案;

2)因?yàn)闊o窮數(shù)列具有性質(zhì),且任意相鄰四項(xiàng)之和都相等,滿足周期性,且,可得,因?yàn)?/span>具備性質(zhì),故滿足:,,采用反證法證明,即可求得答案;

3)數(shù)列是等差數(shù)列,可得的前項(xiàng)和為:,因?yàn)?/span>項(xiàng)和為:,具備性質(zhì),則其中中包含項(xiàng)奇數(shù)項(xiàng),項(xiàng)偶數(shù)項(xiàng),結(jié)合已知,即可求得答案.

1首項(xiàng)為,公比為的無窮等比數(shù)列

根據(jù)等比數(shù)列前項(xiàng)和公式可得:

,

數(shù)列滿足具有性質(zhì).

2無窮數(shù)列具有性質(zhì),且任意相鄰四項(xiàng)之和都相等

滿足周期性,且

可得

具備性質(zhì)

滿足:,

利用反正法證明:

,則,

得:(注:當(dāng)時,,則當(dāng)時,)

矛盾.

,

,

.證明完畢.

3數(shù)列是等差數(shù)列

的前項(xiàng)和為:,

項(xiàng)和為:

具備性質(zhì),

其中中包含項(xiàng)奇數(shù)項(xiàng),項(xiàng)偶數(shù)項(xiàng),

有:

其中中包含項(xiàng)奇數(shù)項(xiàng),項(xiàng)偶數(shù)項(xiàng),

故:

由性質(zhì)

可得,對任意成立

滿足:,解得:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高爾頓板是英國生物統(tǒng)計學(xué)家高爾頓設(shè)計用來研究隨機(jī)現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯開的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ,前面擋有一塊玻璃,讓一個小球從高爾頓板上方的通道口落下,小球在下落的過程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的小木塊中,上面7層為高爾頓板,最下面一層為改造的高爾頓板,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以的概率向左或向右滾下,依次經(jīng)過6次與小木塊碰撞,最后掉入編號為12…,7的球槽內(nèi).例如小球要掉入3號球槽,則在前5次碰撞中有2次向右3次向左滾到第6層的第3個空隙處,再以的概率向左滾下,或在前5次碰撞中有1次向右4次向左滾到第6層的第2個空隙處,再以的概率向右滾下.

(1)若進(jìn)行一次高爾頓板試驗(yàn),求小球落入第7層第6個空隙處的概率;

(2)小明同學(xué)在研究了高爾頓板后,利用該圖中的高爾頓板來到社團(tuán)文化節(jié)上進(jìn)行盈利性“抽獎”活動,8元可以玩一次高爾頓板游戲,小球掉入X號球槽得到的獎金為元,其中.

i)求X的分布列:

ii)高爾頓板游戲火爆進(jìn)行,很多同學(xué)參加了游戲,你覺得小明同學(xué)能盈利嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn)離心率為.

1)求的方程;

2)如圖,若菱形內(nèi)接于橢圓,求菱形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某大學(xué)自主招生考生中,所有選報Ⅱ類志向的考生全部參加了數(shù)學(xué)與邏輯閱讀與表達(dá)兩個科目的考試,成績分為A,B,CD,E五個等級.某考場考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)與邏輯科目的成績?yōu)?/span>B的考生有20.

1)求該考場考生中閱讀與表達(dá)科目中成績?yōu)?/span>A的人數(shù);

2)若等級A,B,C,DE分別對應(yīng)5分,4分,3分,2分,1.

i)求該考場考生數(shù)學(xué)與邏輯科目的平均分;

ii)若該考場共有7人得分大于7分,其中有210分,29分,38分,從這7中隨機(jī)抽取兩人,求兩人成績之和大于等于18的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)和數(shù)列滿足下列條件:,當(dāng)時,,其中均為非零常數(shù).

1)數(shù)列是等差數(shù)列,求的值;

2)令,若,求數(shù)列的通項(xiàng)公式;

3)證明:數(shù)列是等比數(shù)列的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】六位同學(xué)圍成一圈依序循環(huán)報數(shù),規(guī)定:

①第一位同學(xué)首次報出的數(shù)為0.第二位同學(xué)首次報出的數(shù)為1,之后每位同學(xué)所報出的數(shù)都是前兩位同學(xué)所報出的數(shù)之和:

②若報出的是為3的倍數(shù),則報該數(shù)的同學(xué)需拍手一次.

當(dāng)?shù)?/span>50個數(shù)被報出時,六位同學(xué)拍手的總次數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有30位高級教師,其中60%人愛好體育鍛煉,經(jīng)體檢調(diào)查,得到如下列聯(lián)表.

身體好

身體一般

總計

愛好體育鍛煉

2

不愛好體育鍛煉

4

總計

20

1)根據(jù)以上信息完成列聯(lián)表,并判斷有多大把握認(rèn)為“身體好與愛好體育鍛煉有關(guān)系”?

2)現(xiàn)從身體一般的教師中抽取3人,記3人中愛好體育鍛煉的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考公式:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若曲線在點(diǎn)處的切線與軸平行,求;

(2)當(dāng)時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①設(shè),,則“”是“”的充分不必要條件;②若,則,使得;③為等比數(shù)列,則“”是“”的充分不必要條件;④命題“,,使得”的否定形式是“,,使得 .其中正確說法的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案