已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(1)求a的值;(2)判斷的單調(diào)性(不需要寫出理由);
(3)若對(duì)任意的,不等式恒成立,求的取值范圍.
解:(1)函數(shù)的定義域?yàn)镽,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/00/d/ucd0v3.gif" style="vertical-align:middle;" />是奇函數(shù),所以,
即,故.
(另解:由是R上的奇函數(shù),所以,故.
再由,通過驗(yàn)證來確定的合理性)
(2)解法一:由(1)知
由上式易知在R上為減函數(shù),
又因是奇函數(shù),從而不等式等價(jià)于
在R上為減函數(shù),由上式得:
即對(duì)一切從而
解法二:由(1)知又由題設(shè)條件得:
即
整理得,因底數(shù)4>1,故
上式對(duì)一切均成立,從而判別式
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
.已知函數(shù)
(Ⅰ)若函數(shù)在上為增函數(shù),求正實(shí)數(shù)的取值范圍;
( Ⅱ) 設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù),且.
(1)判斷的奇偶性并說明理由;
(2)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(3)若在區(qū)間上,不等式恒成立,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0且a≠1,。
(1)判斷函數(shù)f(x)是否有零點(diǎn),若有求出零點(diǎn);
(2)判斷函數(shù)f(x)的奇偶性;
(3)討論f(x)的單調(diào)性并用單調(diào)性定義證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),常數(shù).
(1)若,判斷在區(qū)間上的單調(diào)性,并加以證明;
(2)若在區(qū)間上的單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的定義域;
(2)求證:函數(shù)是增函數(shù);
(3)求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是定義在R上的偶函數(shù),當(dāng)時(shí),
(1)寫出的解析式;
(2)畫出函數(shù)的圖像;
(3)寫出在上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)函數(shù)f(x)=loga(x2-4ax+3a2), 0<a<1, 當(dāng)x∈[a+2,a+3]時(shí),恒有|f(x)|≤1,試確定a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com