【題目】某廠生產(chǎn)某種產(chǎn)品x(百臺(tái)),總成本為C(x)(萬元),其中固定成本為2萬元,每生產(chǎn)1百臺(tái),成本增加1萬元,銷售收入 (萬元),假定該產(chǎn)品產(chǎn)銷平衡.
(1)若要該廠不虧本,產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺(tái)時(shí),可使利潤最大?
(3)求該廠利潤最大時(shí)產(chǎn)品的售價(jià).
【答案】
(1)解:由題意得,成本函數(shù)為C(x)=2+x,
從而利潤函數(shù)
要使不虧本,只要L(x)≥0,
當(dāng)0≤x≤4時(shí),L(x)≥03x﹣0.5x2﹣2.5≥01≤x≤4,
當(dāng)x>4時(shí),L(x)≥05.5﹣x≥04<x≤5.5.
綜上,1≤x≤5.5.
答:若要該廠不虧本,產(chǎn)量x應(yīng)控制在100臺(tái)到550臺(tái)之間
(2)解:當(dāng)0≤x≤4時(shí),L(x)=﹣0.5(x﹣3)2+2,
故當(dāng)x=3時(shí),L(x)max=2(萬元),
當(dāng)x>4時(shí),L(x)<1.5<2.
綜上,當(dāng)年產(chǎn)300臺(tái)時(shí),可使利潤最大
(3)解:由(2)知x=3,時(shí),利潤最大,此時(shí)的售價(jià)為 (萬元/百臺(tái))=233元/臺(tái)
【解析】由題意寫出成本函數(shù),則收入函數(shù)減去成本函數(shù)即可得到利潤函數(shù).(1)由利潤函數(shù)大于等于0,分段求解x的取值范圍,取并集得答案;(2)分段求解利潤函數(shù)的最大值,取各段最大值中的最大者;(3)(2)中求出了利潤最大時(shí)的x的值,把求得的x值代入 得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)對(duì)任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點(diǎn).
(1)求證: ;
(2)設(shè)平面平面, , ,求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取30件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:
頻數(shù) | 2 | 6 | 18 | 4 |
(I)估計(jì)該技術(shù)指標(biāo)值的平均數(shù);(用各組區(qū)間中點(diǎn)值作代表)
(II) 若或,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,試估計(jì)該條生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率;
(III)生產(chǎn)一件產(chǎn)品,若是合格品可盈利80元,不合格品則虧損10元,在(II)的前提下,從該生產(chǎn)線生產(chǎn)的產(chǎn)品中任取出兩件,記為兩件產(chǎn)品的總利潤,求隨機(jī)變量X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取30件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:
頻數(shù) | 2 | 6 | 18 | 4 |
(I)估計(jì)該技術(shù)指標(biāo)值的平均數(shù)和眾數(shù)(以各組區(qū)間的中點(diǎn)值代表該組的取值);
(II) 若或,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于的產(chǎn)品恰有1件的概率.
查看答案和解析>>
科目:
來源: 題型:【題目】已知函數(shù),函數(shù)在點(diǎn)處的切線與直線平行.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓:及其上一點(diǎn).
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于的直線與圓相交于,兩點(diǎn),且,求直線的方程;
(3)設(shè)點(diǎn)滿足:存在圓上的兩點(diǎn)和,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知不等式對(duì)任意實(shí)數(shù)恒成立.
(Ⅰ)求實(shí)數(shù)的最小值;
(Ⅱ)若,且滿足,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com