設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線
(Ⅰ)求φ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(Ⅲ)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

【答案】分析:(Ⅰ)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線.可得到由此方程求出φ值,
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間可令,解出x的取值范圍即可得到函數(shù)的單調(diào)遞增區(qū)間.
(Ⅲ)由五點(diǎn)法作圖的規(guī)則,列出表格,作出圖象.
解答:解:(Ⅰ)∵的圖象的對(duì)稱軸,∴,∴

(Ⅱ)由(Ⅰ)知
由題意得     
所以函數(shù)
(Ⅲ)由
xx1,y1π
y-11
故函數(shù)y=f(x)在區(qū)間[0,π]上圖象是
點(diǎn)評(píng):本題考查五點(diǎn)法作正弦類函數(shù)的圖象,解題的關(guān)鍵是由函數(shù)的圖象特征求出函數(shù)的解析式,以及熟練掌握五點(diǎn)法作函數(shù)規(guī)則與步驟.本題是三角函數(shù)中一個(gè)綜合性較強(qiáng)的題型,近幾年高考中對(duì)三角函數(shù)的考查多以此題的形式出現(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(diǎn)(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標(biāo)系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2π+?)(-π<?<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π8

(Ⅰ)求?;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(Ⅲ)證明直線5x-2y+c=0與函數(shù)y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π8

(1)求φ;
(2)怎樣由函數(shù)y=sin x的圖象變換得到函數(shù)f(x)的圖象,試敘述這一過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對(duì)稱軸方程;
(2)將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,求g (x)在區(qū)間[-
π
6
,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),給出以下四個(gè)論斷:
①它的圖象關(guān)于直線x=
π
12
對(duì)稱;        
②它的周期為π;
③它的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱;      
④在區(qū)間[-
π
6
,0]上是增函數(shù).
以其中兩個(gè)論斷作為條件,余下兩個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的兩個(gè)命題:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步練習(xí)冊(cè)答案