【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線經(jīng)過橢圓的右焦點(diǎn).
(1)求實(shí)數(shù)的值;
(2)設(shè)直線與橢圓相交于兩點(diǎn),求的值.
【答案】(1);(2)
【解析】
(1)利用消參,可得橢圓的普通方程,以及利用可得直線的直角坐標(biāo)方程,然后利用直線過點(diǎn),可得結(jié)果.
(2)寫出直線的參數(shù)方程,根據(jù)參數(shù)的幾何意義,以及聯(lián)立橢圓的普通方程,得到關(guān)于的一元二次方程,使用韋達(dá)定理,可得結(jié)果.
(1)將曲線的參數(shù)方程(為參數(shù)),
可得曲線的普通方程為,
∴橢圓的右焦點(diǎn)
直線的極坐標(biāo)方程為,
由 ,得
∵直線過點(diǎn),∴;
(2)設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,
將直線的參數(shù)方程(為參數(shù))
代入,化簡得,
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),且其左右焦點(diǎn)的坐標(biāo)分別是,.
(1)求橢圓的離心率及標(biāo)準(zhǔn)方程;
(2)設(shè)為動(dòng)點(diǎn),其中,直線經(jīng)過點(diǎn)且與橢圓相交于,兩點(diǎn),若為的中點(diǎn),是否存在定點(diǎn),使恒成立?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過點(diǎn)A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點(diǎn)P,滿足PA=PO?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為F1, F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.
(1)求點(diǎn)M的軌跡的方程;
(2)設(shè)與x軸交于點(diǎn)Q, 上不同于點(diǎn)Q的兩點(diǎn)R、S,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)員射擊一次所得環(huán)數(shù)的分布列如下:
8 | 9 | 10 | |
0.4 | 0.4 | 0.2 |
現(xiàn)進(jìn)行兩次射擊,且兩次射擊互不影響,以該運(yùn)動(dòng)員兩次射擊中最高環(huán)數(shù)作為他的成績,記為.
(1)求該運(yùn)動(dòng)員兩次命中的環(huán)數(shù)相同的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)的某種產(chǎn)品中抽取件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(Ⅰ)求這件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,記作,);
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)若使的產(chǎn)品的質(zhì)量指標(biāo)值高于企業(yè)制定的合格標(biāo)準(zhǔn),則合格標(biāo)準(zhǔn)的質(zhì)量指標(biāo)值大約為多少?
(ii)若該企業(yè)又生產(chǎn)了這種產(chǎn)品件,且每件產(chǎn)品相互獨(dú)立,則這件產(chǎn)品質(zhì)量指標(biāo)值不低于的件數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式:,;若,則①;②;③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建一個(gè)長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若,且,則的取值范圍是______.
(2)若,,且,則的取值范圍是______.
(3)已知,且,則的最小值是______.
(4)已知實(shí)數(shù),,若,,且,則的最小值______.
(5)已知實(shí)數(shù),,若,,則的最小值______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P(,1),Q(cosx,sinx),O為坐標(biāo)原點(diǎn),函數(shù)f(x).
(1)求f(x)的解析式及最小正周期;
(2)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為,求AB+AC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com