【題目】在平面直角坐標系中,曲線的方程是: ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)設過原點的直線與曲線交于, 兩點,且,求直線的斜率.

【答案】(1);(2).

【解析】試題分析:

1將直角坐標方程轉化為極坐標方程可得曲線的極坐標方程為.

2)法1:由圓的弦長公式可得圓心到直線距離由幾何關系可得直線的斜率為.

2:設直線 為參數(shù)),與圓的直角坐標方程聯(lián)立,利用直線參數(shù)的幾何意義可得直線的斜率為.

3:設直線 ,與圓的方程聯(lián)立,結合圓錐曲線的弦長公式可得直線的斜率為.

4:設直線 ,結合弦長公式可得圓心到直線距離利用點到直線距離公式解方程可得直線的斜率為.

試題解析:

1)曲線 ,即

, 代入得

曲線的極坐標方程為.

2)法1:由圓的弦長公式,得圓心到直線距離,

如圖,在中,易得,可知

直線的斜率為.

2:設直線 為參數(shù)),代入中得,整理得,

,即,

解得,從而得直線的斜率為.

3:設直線 ,代入中得

,即,

,即,

解得直線的斜率為.

4:設直線 ,則圓心到直線的距離為

由圓的弦長公式,得圓心到直線距離

所以,解得直線的斜率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動點M到定點F1-2,0)和F22,0)的距離之和為

1)求動點M軌跡C的方程;

2)設N02),過點P-1-2)作直線l,交橢圓C于不同于NA,B兩點,直線NANB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓: 的左右焦點分別 ,過作垂直于軸的直線交橢圓于兩點,滿足.

(1)求橢圓的離心率.

(2)是橢圓短軸的兩個端點,設點是橢圓上一點(異于橢圓的頂點),直線分別與軸相交于兩點,為坐標原點,若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點

)求橢圓的方程;

)是否存在過點的直線相交于不同的兩點,滿足?

若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)若滿足: ,且,則稱函數(shù)為“指向的完美對稱函數(shù)”.已知是“1指向2的完美對稱函數(shù)”,且當時, .若函數(shù)在區(qū)間上恰有5個零點,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知都是各項不為零的數(shù)列,且滿足,其中是數(shù)列的前項和,是公差為的等差數(shù)列.

1)若數(shù)列的通項公式分別為,求數(shù)列的通項公式;

2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;

3)若為常數(shù),),,),對任意,求出數(shù)列的最大項(用含式子表達).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的單調(diào)減函數(shù)是奇函數(shù),當時,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,前項和為,若對任意的,均有是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.

(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;

(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對一切,恒成立?如果存在,求出這樣數(shù)列的所有可能值,如果不存在,請說明理由;

(3)若數(shù)列為“數(shù)列”,且,證明:.

查看答案和解析>>

同步練習冊答案