【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若平面,則線段長(zhǎng)度的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

分析:首先確定點(diǎn)P的軌跡,然后利用幾何體的結(jié)構(gòu)特征整理計(jì)算即可求得最終結(jié)果.

詳解:分別取棱BB1、B1C1的中點(diǎn)M、N,連接MN,

M、N、E、F為所在棱的中點(diǎn),

MNBC1EFBC1,

MNEF.

MN平面AEF,EF平面AEF,

MN∥平面AEF.

AA1NEAA1=NE,

∴四邊形AENA1為平行四邊形,

A1NAE.

A1N平面AEF,AE平面AEF

A1N∥平面AEF.

A1NMN=N,

∴平面A1MN∥平面AEF.

P是側(cè)面BCC1B1內(nèi)一點(diǎn),A1P∥平面AEF,

P必在線段MN.

∵在RtA1B1M中,A1B1=1,,

同理可得在RtA1B1N,

∴△A1MN是等腰三角形.

當(dāng)PMN中點(diǎn)O時(shí)A1PMN,此時(shí)A1P最短,P位于M、N處時(shí)A1P最長(zhǎng).

∵在RtB1MN中,,

.

∵點(diǎn)OMN中點(diǎn),

.

∵在RtA1MO中,,

.

,

∴線段A1P長(zhǎng)度的取值范圍是.

本題選擇B選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知遞增等比數(shù)列{an},滿足a1=1,且a2a4﹣2a3a5+a4a6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an+ ,求數(shù)列{an2bn}的前n項(xiàng)和Sn
(3)在(2)的條件下,令cn= ,{cn}的前n項(xiàng)和為Tn , 若Tn>λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐中,底面為菱形,且, 底面,

, , 上點(diǎn),且平面.

(1)求證: ;(2)求三棱錐的體積.

【答案】(1)見解析;(2).

【解析】試題分析:(1)根據(jù)菱形性質(zhì)得對(duì)角線相互垂直,根據(jù)底面,再根據(jù)線面垂直判定定理得即可得結(jié)果(2)記的交點(diǎn)為,則BD 為高,三角形POE為底,根據(jù)錐體體積公式求體積

試題解析:(1)

(2)記的交點(diǎn)為,連接

平面

中: , ,

中: ,則,即,

型】解答
結(jié)束】
21

【題目】已知橢圓 的離心率,且其的短軸長(zhǎng)等于.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,記圓 ,過(guò)定點(diǎn)作相互垂直的直線,直線(斜率)與圓和橢圓分別交于、兩點(diǎn),直線與圓和橢圓分別交于、兩點(diǎn),若面積之比等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個(gè))

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離和它到直線的距離的比值為常數(shù),記動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相交于不同的兩點(diǎn), ,直線與曲線相交于不同的兩點(diǎn) ,且,求以, , , 為頂點(diǎn)的凸四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱柱,側(cè)棱與底面垂直,,,分別是,的中點(diǎn).

)求證:平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,短軸長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè), 是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn)

(3)在(2)的條件下,過(guò)點(diǎn)的直線與橢圓交于, 兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是拋物線 )上一點(diǎn), 是拋物線的焦點(diǎn), .

(1)求拋物線的方程;

(2)已知 ,過(guò) 的直線 交拋物線 、 兩點(diǎn),以 為圓心的圓 與直線 相切,試判斷圓 與直線 的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案