已知直線l的極坐標方程為ρcos(θ-)=,則極點到這條直線的距離等于   
【答案】分析:先將原極坐標方程ρcos(θ-)=中的三角函數(shù)式展開后兩邊同乘以ρ后化成直角坐標方程,再利用直角坐標方程進行求解即得.
解答:解:將原極坐標方程ρcos(θ-)=化為:
ρcosθ+ρsinθ=1,
化成直角坐標方程為:x+y-1=0,
則極點到該直線的距離是 =
故答案為:
點評:本題考查簡單曲線的極坐標方程、點到這條直線的距離等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(參數(shù)θ∈[0,2π]),則直線l被曲線C所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的單位長度.已知直線l的極坐標方程為ρcosθ+2sinθ=0,曲線C的參數(shù)方程為
x=4cosα
y=2sinα
(α為參數(shù)).
(Ⅰ)求直線l的直角坐標方程和曲線C的普通方程;
(Ⅱ)若直線l與曲線C交于A、B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的極坐標方程為ρcos(θ+
π
4
)=
2
,圓M的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),則圓M上的點到直線l的最短距離為
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的極坐標方程為ρsin(θ-
π
3
)=6
,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ

(1)化直線l的方程為直角坐標方程;
(2)化圓的方程為普通方程;
(3)求直線l被圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•崇明縣二模)已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
2
,則極點到這條直線的距離等于
2
2
2
2

查看答案和解析>>

同步練習冊答案