(2011•崇明縣二模)已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
2
,則極點(diǎn)到這條直線的距離等于
2
2
2
2
分析:先將原極坐標(biāo)方程ρcos(θ-
π
4
)=
2
2
中的三角函數(shù)式展開后兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行求解即得.
解答:解:將原極坐標(biāo)方程ρcos(θ-
π
4
)=
2
2
化為:
ρcosθ+ρsinθ=1,
化成直角坐標(biāo)方程為:x+y-1=0,
則極點(diǎn)到該直線的距離是
1
2
=
2
2

故答案為:
2
2
點(diǎn)評:本題考查簡單曲線的極坐標(biāo)方程、點(diǎn)到這條直線的距離等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)若一個(gè)無窮等比數(shù)列{an}的前n項(xiàng)和為Sn,且
lim
n→∞
Sn=
1
2
,則首項(xiàng)a1取值范圍是
(0,
1
2
)∪(
1
2
,1)
(0,
1
2
)∪(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)設(shè)函數(shù)f(x)=x2+1,若關(guān)于x的不等式f(
x
m
)+4f(m)≤4m2f(x)+f(x-1)對任意x∈[
3
2
,+∞)恒成立,則實(shí)數(shù)m的取值范圍是
(-∞,-
3
2
]∪[
3
2
,+∞)
(-∞,-
3
2
]∪[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)方程log2(3x-4)=1的解x=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)函數(shù)y=cos4πx-sin4πx的最小正周期T=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)已知z是方程z-2=i(z+1)的復(fù)數(shù)解,則|z|=
10
2
10
2

查看答案和解析>>

同步練習(xí)冊答案