【題目】對于四面體,有以下命題:

1)若則過向底面作垂線,垂足為底面的外心;

2)若, 則過向底面作垂線,垂足為底面的內(nèi)心;

3)四面體的四個面中,最多有四個直角三角形;

4若四面體6條棱長都為1,則它的內(nèi)切球的表面積為.

其中正確的命題是__________

【答案】

【解析】對于,設(shè)點A在平面BCD內(nèi)的射影是O,因為AB=AC=AD,所以O(shè)B=OC=OD,

則點A在底面BCD內(nèi)的射影是BCD的外心,故正確;

對于設(shè)點A在平面BCD內(nèi)的射影是O,則OB是AB在平面BCD內(nèi)的射影,因為ABCD,根據(jù)三垂線定理的逆定理可知:CDOB 同理可證BDOC,所以O(shè)是BCD的垂心,故不正確;

對于:如圖:直接三角形的直角頂點已經(jīng)標(biāo)出,直角三角形的個數(shù)是4.故正確

對于,如圖O為正四面體ABCD的內(nèi)切球的球心,正四面體的棱長為:1;

所以O(shè)E為內(nèi)切球的半徑,BF=AF=,BE=

所以AE==,

因為BO2﹣OE2=BE2,

所以(OE2OE2=2,

所以O(shè)E=,

所以球的表面積為:4πOE2=,故正確.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知且滿足不等式

1 求不等式;

2若函數(shù)在區(qū)間有最小值為,求實數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點E,F(xiàn),G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)解關(guān)于的不等式;

(2)若函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍;

(3)設(shè)函數(shù),求滿足的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2﹣5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(1)求m的值;
(2)求函數(shù)g(x)=h(x)+ 在x∈[0, ]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

收入x(萬元)

8.2

8.6

10.0

11.3

11.9

支出y(萬元)

6.2

7.5

8.0

8.5

9.8

根據(jù)上表可得回歸直線方程 ,其中 = ,據(jù)此估計,該社區(qū)一戶居民年收入為15萬元家庭的年支出為萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E、F分別是棱DD1、C1D1的中點.
(Ⅰ)證明:平面ADC1B1⊥平面A1BE;
(Ⅱ)證明:B1F∥平面A1BE;
(Ⅲ)若正方體棱長為1,求四面體A1﹣B1BE的體積.

查看答案和解析>>

同步練習(xí)冊答案