一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計對比,得到如下表格:(其中i=1,2,3,4,5,6,7,).
人數(shù)xi10152025303540
件數(shù)yi471215202327
(Ⅰ)以每天進(jìn)店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫出散點圖.
(Ⅱ)求回歸直線方程.(結(jié)果保留到小數(shù)點后兩位)
(參考數(shù)據(jù):
7
i=1
xiyi=3245,
.
x
=25,
.
y
=15.43,
7
i=1
x
 
2
i
=5075,7(
.
x
2=4375,
.
x
.
y
=2695,
b
=
n
i=1
xiyi-n
.
n
.
y
n
i=1
x
2
i
-n
.
x
2
,
a
=
.
y
-
b
.
x

(Ⅲ)預(yù)測進(jìn)店人數(shù)為80人時,商品銷售的件數(shù).(結(jié)果保留整數(shù))
考點:線性回歸方程
專題:綜合題,概率與統(tǒng)計
分析:(I)根據(jù)所給的這一組數(shù)據(jù),得到7個點的坐標(biāo),把這幾個點的坐標(biāo)在直角坐標(biāo)系中描出對應(yīng)的點,得到散點圖,從散點圖可以看出,這兩個兩之間是正相關(guān).
(II)根據(jù)所給的數(shù)據(jù),做出x,y的平均數(shù),即得到這組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
(III)利用上一問做出的線性回歸方程,把x的值代入方程,預(yù)報出對應(yīng)的y的值.
解答: 解:(Ⅰ)散點圖如圖…(4分)
(Ⅱ)∵
7
i=1
xiyi=3245,
.
x
=25,
.
y
=15.43,
7
i=1
x
 
2
i
=5075,7(
.
x
2=4375,
.
x
.
y
=2695,
b
=≈0.79,…(6分)
a=-4.32…(8分)
∴回歸直線方程是y=0.79x-4.32…(9分)
(Ⅲ).進(jìn)店人數(shù)80人時,商品銷售的件數(shù)y=0.79×80-4.32≈59件…(12分)
點評:本題考查線性回歸方程,考查最小二乘法求線性回歸方程的系數(shù),考查樣本中心點的求法,本題的運算量比較大,是一個綜合題目,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα(1+
3
tan10°)=1,求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:lnx<x<ex時,x>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAC地段中,OB是連接△OBC與△OAB的一條道路,且OB=(1+
3
)百米,點B在AC上,且∠AOB=30°,∠BOC=45°,設(shè)OA=x(3≤x≤6)百米,OC=y百米.
(1)將y表示成x的函數(shù);
(2)當(dāng)x取何值時,△AOC的面積最?最小值是多少平方米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
25
+
y2
16
=1
的右焦點F2作直線AB交橢圓于A,B兩點,F(xiàn)1是橢圓的左焦點,則△AF1B的周長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和為Sn,且a1=1,Sn=n2an,n∈N*試歸納猜想出Sn的表達(dá)式為(  )
A、
3n
n+1
B、
2n-1
n+1
C、
2n+1
n+2
D、
2n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1.025精確到0.01的近似值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是異面直線,直線c∥a,那么c與b(  )
A、一定是異面
B、一定是相交直線
C、不可能是相交直線
D、不可能是平行直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+ax+b2-b+1(a∈R,b∈R),對任意實數(shù)x都有f(1-x)=f(1+x)成立,若當(dāng)x∈[-1,1]時,f(x)>0恒成立,則b的取值范圍是( 。
A、b<-1或 b>2
B、b>2
C、-1<b<0
D、不能確定

查看答案和解析>>

同步練習(xí)冊答案