如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點(diǎn)。                  

                      

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,   

使得BE∥平面PAC。若存在,求SE:EC的值;

若不存在,試說明理由。

解法一:

     (Ⅰ)連BD,設(shè)AC交BD于O,由題意。在正方形ABCD中,,所以,得.

      (Ⅱ)設(shè)正方形邊長,則。

,所以,

      連,由(Ⅰ)知,所以, w.w.w.k.s.5.u.c.o.m   

,所以是二面角的平面角。

,知,所以,

即二面角的大小為。

  (Ⅲ)在棱SC上存在一點(diǎn)E,使

由(Ⅱ)可得,故可在上取一點(diǎn),使,過的平行線與的交點(diǎn)即為。連BN。在中知,又由于,故平面,得,由于,故.

解法二:

     (Ⅰ);連,設(shè)交于,由題意知.以O(shè)為坐標(biāo)原點(diǎn),分別為軸、軸、軸正方向,建立坐標(biāo)系如圖。

   設(shè)底面邊長為,則高。

   于是    

             w.w.w.k.s.5.u.c.o.m      

           

           

         w.w.w.k.s.5.u.c.o.m   

故    

從而  

      (Ⅱ)由題設(shè)知,平面的一個(gè)法向量,平面的一個(gè)法向量,設(shè)所求二面角為,則,所求二面角的大小為

     (Ⅲ)在棱上存在一點(diǎn)使.

      由(Ⅱ)知是平面的一個(gè)法向量,

    且  

設(shè)      w.w.w.k.s.5.u.c.o.m   

則     

而      

即當(dāng)時(shí), w.w.w.k.s.5.u.c.o.m      

不在平面內(nèi),故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
3
,點(diǎn)E、G分別在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)證明平面BG∥平面SDE;
(2)求面SAD與面SBC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),AD=2,AB=1.SP與平面ABCD所成角為
π4
. 
(1)求證:平面SPD⊥平面SAP;
(2)求三棱錐S-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點(diǎn),且SE=2EC,SA=6,AB=2.
(1)求證:平面EBD⊥平面SAC;
(2)求三棱錐E-BCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
(1)求證:四邊形ABCD是直角梯形;
(2)求異面直線SB與CD所成角的大小;
(3)求直線AC與平面SAB所成角的大。

查看答案和解析>>

同步練習(xí)冊答案