精英家教網 > 高中數學 > 題目詳情
如圖,在直三棱柱中,平面側面

  (Ⅰ)求證:

  (Ⅱ)若,直線AC與平面所成的角為,二面角

本小題主要考查線面關系、直線與平面所成角、二面角等有關知識,考查空間想象能力和推理論證能力.

   (Ⅰ)證明:如右圖,過點A在平面A1ABB1內作ADA1BD,則

由平面A1BC⊥側面A1ABB1,且平面A1BC∩側面A1ABB1A1B,

AD⊥平面A1BC.又BC平面A1BC

所以ADBC.

因為三棱柱ABCA1B1C1是直三棱柱,

AA1⊥底面ABC,所以AA1BC.

AA1AD=A,從而BC⊥側面A1ABB1,

AB側面A1ABB1

ABBC.

   (Ⅱ)證法1:連接CD,則由(Ⅰ)知∠ACD就是直線AC與平面A1BC所成的角,∠ABA1就是二面角A1BCA的平面角,即∠ACDθ,∠ABA1=.

      于是在RtΔADC中,sinθ=,在RtΔADA1中,sin∠A1AD,

      ∴sinθ=sin∠AA1D,由于θ與∠AA1D都是銳角,所以θ=∠AA1D.

      又由RtΔA1AB知,∠A1AD=∠AA1B,故θ.

      證法2:由(Ⅰ)知,以點B為坐標原點,以BC、BA、BB1所在的直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.

AB=c(ca),則B(0,0,0),A(0,c,0),C(),

A1(0,c,a),于是,=(0,c,a),

?=(0,0,a)

設平面A1BC的一個法向量為n=(x,y,z),

則由

可取n=(0,-a,c),于是

n·=ac>0,n的夾角為銳角,則互為余角.

sin=cos=,

cos=

所以sin=cos=sin(),又0<,所以+=.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側棱AA1=
2
,M為A1B1的中點,則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數學 來源:2013屆廣東省高二下期中理科數學試卷(解析版) 題型:解答題

如圖,在直三棱柱中, AB=1,,

∠ABC=60.

(1)證明:

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年天津市高三第二次月考文科數學 題型:解答題

(本小題滿分13分)如圖,在直三棱柱中,,分別為的中點,四邊形是邊長為的正方形.

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年四川省高三2月月考理科數學 題型:解答題

如圖,在直三棱柱中,,的中點.

(Ⅰ)求證:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)試問線段上是否存在點,使 角?若存在,確定點位置,若不存在,說明理由.

 

 

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南省高二9月月考數學試卷 題型:解答題

如圖,在直三棱柱中,,點的中點.

求證:(1);(2)平面.

 

 

 

查看答案和解析>>

同步練習冊答案