【題目】已知向量 =3 1﹣2 2 , =4 1+ 2 , 其中 1=(1,0), 2=(0,1),求:
(1) 和| + |的值;
(2) 與 夾角θ的余弦值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,設命題p:橢圓C: + =1的焦點在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點. 若命題p、命題q中有且只有一個為真命題,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l經過直線3x+4y﹣2=0與直線2x+y+2=0的交點P,且垂直于直線x﹣2y﹣1=0.
(1)求直線l的方程;
(2)求直線l關于原點O對稱的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(11)的值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,橢圓C過點A ,兩個焦點為(﹣1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】ABCD為空間四邊形,AB=CD,AD=BC,AB≠AD,M,N分別是對角線AC與BD的中點,則MN與( )
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)求平行于直線x﹣2y+1=0,且與它的距離為2 的直線方程; (Ⅱ)求經過兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點P,且與直線l3:2x+3y+1=0垂直的直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com