【題目】若實(shí)數(shù)x,y滿足不等式組 ,則z=2|x|+y的最大植為
【答案】11
【解析】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由 ,解得B(6,﹣1),
由 解得C(﹣2,﹣1),
當(dāng)x≥0時(shí),z=2x+y,即y=﹣2x+z,x≥0,
當(dāng)x<0時(shí),z=﹣2x+y,即y=2x+z,x<0,
當(dāng)x≥0時(shí),平移直線y=﹣2x+z,(紅線),
當(dāng)直線y=﹣2x+z經(jīng)過(guò)點(diǎn)A(0,﹣1)時(shí),
直線y=﹣2x+z的截距最小為z=﹣1,
當(dāng)y=﹣2x+z經(jīng)過(guò)點(diǎn)B(6,﹣1)時(shí),
直線y=﹣2x+z的截距最大為z=11,此時(shí)﹣1≤z≤11.
當(dāng)x<0時(shí),平移直線y=2x+z,(藍(lán)線),
當(dāng)直線y=2x+z經(jīng)過(guò)點(diǎn)A(0,﹣1)時(shí),直線y=2x+z的截距最小為z=﹣1,
當(dāng)y=2x+z經(jīng)過(guò)點(diǎn)C(﹣2,﹣1)時(shí),
直線y=2x+z的截距最大為z=4﹣1=3,此時(shí)﹣1≤z≤3,
綜上﹣1≤z≤11,
故z=2|x|+y的取值范圍是[﹣1,11],
故z的最大值為11,
所以答案是:11.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在 上的函數(shù) 滿足 ,且 是偶函數(shù),當(dāng) 時(shí), .令 ,若在區(qū)間 內(nèi),函數(shù) 有4個(gè)不相等實(shí)根,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.8元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照 分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
(ⅰ)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過(guò)12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi) (元)與月份 的散點(diǎn)圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 和 兩個(gè)空白框中,可以分別填入( )
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問(wèn)題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義域?yàn)镽的周期函數(shù),最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系 中,圓 ,圓 .
(Ⅰ)在以 為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,分別寫(xiě)出圓 的極坐標(biāo)方程,并求出圓 的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求出 與 的公共弦的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績(jī)由統(tǒng)一高考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)3個(gè)科目成績(jī)和高中學(xué)業(yè)水平考試3個(gè)科目成績(jī)組成.保持統(tǒng)一高考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)科目不變,分值不變,不分文理科,外語(yǔ)科目提供兩次考試機(jī)會(huì).計(jì)入總成績(jī)的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報(bào)考高校要求和自身特長(zhǎng),在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.
(1)某高校某專(zhuān)業(yè)要求選考科目物理,考生若要報(bào)考該校該專(zhuān)業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績(jī)達(dá)到二級(jí)的概率都是0.8,且三人約定如果達(dá)到二級(jí)不參加第二次考試,達(dá)不到二級(jí)參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,側(cè)面為矩形, , , 是的中點(diǎn), 與交于點(diǎn),且平面.
(1)證明: ;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com