【題目】已知函數(shù),.
(1)若,求實數(shù)的取值范圍;
(2)設函數(shù)的極大值為,極小值為,求的取值范圍.
【答案】(1); (2).
【解析】
(1)根據(jù)題意轉化為的最小值小于等于9,二次函數(shù)根據(jù)軸與區(qū)間的關系進行分類討論,得到答案.(2)利用導數(shù)求出的極小值和極大值,并且得到 的關系,以及與 的關系,表示出消去,然后令,將轉化成關于的函數(shù),注意的取值范圍,從而求出的范圍.
(1)因為,
所以函數(shù)的最小值小于等于9.
(i)函數(shù)的對稱軸為,當,即時,
由,得,
因為,所以;
(ii)當,即時,
由,得.
綜上,實數(shù)的取值范圍為.
(2)因為,所以.
設,因為,
所以函數(shù)有兩個不同的零點,不妨設為,,且,
則,.
當時,,函數(shù)為單調遞減函數(shù);
當時,,函數(shù)為單調遞增函數(shù);
當時,,函數(shù)為單調遞減函數(shù).
所以當時,函數(shù)取得極小值,當時,函數(shù)取得極大值,
所以,
又,,所以.
將代入,得,
設,則 ,
所以.
設,,則,
所以函數(shù)在上為單調減函數(shù),
從而,
又,當時,,所以,
即.
故的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】影響消費水平的原因很多,其中重要的一項是工資收入.研究這兩個變量的關系的一個方法是通過隨機抽樣的方法,在一定范圍內收集被調查者的工資收入和他們的消費狀況.下面的數(shù)據(jù)是某機構收集的某一年內上海、江蘇、浙江、安徽、福建五個地區(qū)的職工平均工資與城鎮(zhèn)居民消費水平(單位:萬元).
地區(qū) | 上海 | 江蘇 | 浙江 | 安徽 | 福建 |
職工平均工資 | 9.8 | 6.9 | 6.4 | 6.2 | 5.6 |
城鎮(zhèn)居民消費水平 | 6.6 | 4.6 | 4.4 | 3.9 | 3.8 |
(1)利用江蘇、浙江、安徽三個地區(qū)的職工平均工資和他們的消費水平,求出線性回歸方程,其中,;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過1萬,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(的結果保留兩位小數(shù))
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著社會的進步,經(jīng)濟的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關部門調查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關部門,對2018 年參加駕照考試的21 歲以下學員隨機抽取10 名學員,對他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關知識)進行兩輪現(xiàn)場測試,并把兩輪測試成績的平均分作為該名學員的抽測成績.記錄的數(shù)據(jù)如下:
(1)從2018年參加駕照考試的21歲以下學員中隨機選取一名學員,試估計這名學員抽測成績大于或等于90分的概率;
(2)根據(jù)規(guī)定,科目三和科目四測試成績均達到90分以上(含90)才算測試合格.
(i)從抽測的1號至5號學員中任取兩名學員,記為學員測試合格的人數(shù),求的分布列和數(shù)學期望 ;
(ii) 記抽取的10名學員科目三和科目四測試成績的方差分別為,,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信運動是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號,很多手機用戶加入微信運動后,為了讓自己的步數(shù)能領先于朋友,運動的積極性明顯增強.微信運動公眾號為了解用戶的一些情況,在微信運動用戶中隨機抽取了100名用戶,統(tǒng)計了他們某一天的步數(shù),數(shù)據(jù)整理如下:
萬步 | |||||||
人 | 5 | 20 | 50 | 18 | 3 | 3 | 1 |
(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標平面中作出其頻率分布直方圖,并在縱軸上標明各小長方形的高;
(Ⅱ)若視頻率分布為概率分布,在微信運動用戶中隨機抽取3人,求至少2人步數(shù)多于1.2萬步的概率;
(Ⅲ)若視頻率分布為概率分布,在微信運動用戶中隨機抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有人,設,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..
(1)求證:平面平面;
(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)已知曲線的極坐標方程為,,,點是曲線與的交點,點是曲線與的交點,且,均異于原點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
某學校高一數(shù)學興趣小組對學生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學生,記錄并整理了這些學生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時數(shù)工(單位:小時) | 14 | 11 | 13 | 12 | 9 |
體育成績優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設偶函數(shù)和奇函數(shù)的圖象如圖所示,集合A 與集合B 的元素個數(shù)分別為a,b,若,則a+b的值不可能是( )
A. 12B. 13C. 14D. 15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com