定義在區(qū)間(0,+∞)上的函數(shù)f (x)滿足:(1)f(x)不恒為零;(2)對(duì)任意a∈R+,b∈R,都有f(ab)=bf(a).
(Ⅰ)求f(1)的值;
(Ⅱ)求證方程f(x)=0有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)若f(2)>0,試證f(x)是(0,+∞)上的增函數(shù).
分析:(Ⅰ)依題意,令a=1,b=2,即可求得f(1)的值;
(Ⅱ)由(1)知,存在x0∈(0,+∞),使得f (x0)≠0,任取x1∈(0,+∞)且x1≠1,結(jié)合題意即可證得方程f(x)=0有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意的0<x1<x2<+∞,存在實(shí)數(shù)p1,p2,使得x1=2p1,x2=2p2,且p1<p2,作差判斷即可證得結(jié)論.
解答:(Ⅰ)解:∵f (ab)=bf (a),
令a=1,b=2,
∴f (1)=f (12)=2f (1),
∴f (1)=0.(3分)
(Ⅱ)證明:由(1)知,存在x0∈(0,+∞),使得f (x0)≠0,顯然x0≠1.
任取x1∈(0,+∞)且x1≠1,則
必存在實(shí)數(shù)q,使得x1=x0q,q≠0.
由(2)知f (x1)=f (x0q)=qf (x0)≠0,
故f (x)=0有且只有一個(gè)實(shí)數(shù)根x=1.(8分)
(Ⅲ)證明:對(duì)任意的0<x1<x2<+∞,
存在實(shí)數(shù)p1,p2,使得x1=2p1,x2=2p2,且p1<p2
f (x1)-f (x2)=f (2p1)-f (2p2
=p1f (2)-p2f (2)
=(p1-p2) f (2)<0,
∴f (x1)<f (x2),
∴函數(shù)f (x)在(0,+∞)上單調(diào)遞增.(14分)
點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,著重考查函數(shù)單調(diào)性的判斷與證明,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在區(qū)間(0,a)上的函數(shù)f(x)=
x2
2x
有反函數(shù),則a最大為(  )
A、
2
ln2
B、
ln2
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1x2
)=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1x2
)=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1)的值.
(2)判斷f(x)的單調(diào)性.
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足對(duì)任意的實(shí)數(shù)x,y都有f(xy)=yf(x)
(Ⅰ)求f(1)的值;
(Ⅱ)若f(
1
2
)<0
,求證:f(x)在(0,+∞)上是增函數(shù);
(Ⅲ)若f(
1
2
)<0
,解不等式f(|3x-2|-2x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足:對(duì)?x1,x2∈(0,+∞)恒有f(
x1x2
)=f(x1)-f(x2)
,且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1)的值;
(2)證明:函數(shù)f(x)在區(qū)間(0,+∞)上為單調(diào)遞減函數(shù);
(3)若f(3)=-1,
(。┣骹(9)的值;(ⅱ)解不等式:f(3x)<-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案