已知各項均為正數(shù)的數(shù)列{a}滿足a=2a+aa,且a+a=2a+4,其中n∈N.
(Ⅰ)若b=,求數(shù)列{b}的通項公式;
(Ⅱ)證明:++…+>(n≥2).

(1)b=(n∈N
(2)構(gòu)造函數(shù)借助于函數(shù)的最值來證明不等式。

解析試題分析:解:(Ⅰ)因為a=2a+aa,即(a+a)(2a-a)=0.            1分
又a>0,所以有2a-a=0,即2a=a
所以數(shù)列是公比為2的等比數(shù)列,              3分
,解得。
從而,數(shù)列{a}的通項公式為a=2(n∈N),即:b=(n∈N). 5分
(Ⅱ)構(gòu)造函數(shù)f(x)=(b-x)(x>0),
則f′(x)=+=
當0<x<b時,f′(x)>0,x>b時,f′(x)<0,
所以f(x)的最大值是f(b)=,所以f(x)≤.            7分
(b-x)(x>0,i=1,2,3…n),取“=”的條件是x=b(i=1,2,3…n),
所以++…+>(b+b+…+b-nx), 9分
令x=,則++…+>,
所以++…+>,      11分
++…+>(n≥2).                12分
考點:數(shù)列與導(dǎo)數(shù)、不等式
點評:解決的關(guān)鍵是能利用等比數(shù)列來求解通項公式,同時能結(jié)合導(dǎo)數(shù)來拍腦袋函數(shù)單調(diào)性,以及求解函數(shù)的最值,同時證明不等式,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項為,公差為,且不等式的解集為
(I)求數(shù)列的通項公式;
(II)若,求數(shù)列項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和滿足,等差數(shù)列滿足
(1)求數(shù)列、的通項公式;
(2)設(shè),數(shù)列的前項和為,求證 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列首項,公差為,且數(shù)列是公比為4的等比數(shù)列,
(1)求;
(2)求數(shù)列的通項公式及前項和;
(3)求數(shù)列的前項和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科只做(1)(2)問,理科全做)
設(shè)是函數(shù)圖象上任意兩點,且,已知點的橫坐標為,且有,其中且n≥2,
(1) 求點的縱坐標值;
(2) 求,,
(3)已知,其中,且為數(shù)列的前n項和,若對一切都成立,試求λ的最小正整數(shù)值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前n項和記為,已知
證明:(1)數(shù)列是等比數(shù)列;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,滿足,且依次是等比數(shù)列的前兩項。
(1)求數(shù)列的通項公式;
(2)是否存在常數(shù),使得數(shù)列是常數(shù)列?若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,且, ,
(Ⅰ)求,的通項公式;
(Ⅱ)求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知f (x)=mx(m為常數(shù),m>0且m≠1).設(shè)f (a1),f (a2),,f (an),(n∈N)是首項為m2,公比為m的等比數(shù)列.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bnan f (an),且數(shù)列{bn}的前n項和為Sn,當m=3時,求Sn;
(3)若cnf(an) lg f (an),問是否存在m,使得數(shù)列{cn}中每一項恒不小于它后面的項?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案