已知數(shù)列的前項(xiàng)和滿足,等差數(shù)列滿足,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證 .

(1),(2)證明如下

解析試題分析:解:(1)當(dāng)時,,∴ 
當(dāng)時,, 即   ∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,∴
設(shè)的公差為,,∴
 
(2) 

考點(diǎn):等比數(shù)列;等差數(shù)列
點(diǎn)評:對于求一般數(shù)列的通項(xiàng)公式或前n項(xiàng)和時,常用方法有:錯位相減法、裂變法等,目的是消去中間部分,像本題在求時就用到裂變法。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足 
(1)求數(shù)列、的通項(xiàng)公式
(2)設(shè)=,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,數(shù)列滿足.
(Ⅰ)證明數(shù)列是等差數(shù)列并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列 ,滿足數(shù)列的前項(xiàng)和為,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;           
(Ⅱ)求證:;
(Ⅲ)求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若S是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列。
(1)求等比數(shù)列的公比;
(2)若,求的通項(xiàng)公式;
(3)設(shè)是數(shù)列的前項(xiàng)和,求使得對所有都成立的最小正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,已知
(1)設(shè),證明數(shù)列是等比數(shù)列  (2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{a}滿足a=2a+aa,且a+a=2a+4,其中n∈N.
(Ⅰ)若b=,求數(shù)列{b}的通項(xiàng)公式;
(Ⅱ)證明:++…+>(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

同步練習(xí)冊答案