【題目】已知函數(shù)
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間 上的最大值和最小值.
【答案】解:(Ⅰ)化簡可得 = 2sinxcosx+2cos2x+2
= sin2x+cos2x+1+2
=2sin(2x+ )+3,
∴函數(shù)f(x)的最小正周期T= =π,
由2kπ+ ≤2x+ ≤2kπ+ 可得kπ+ ≤x≤kπ+
∴函數(shù)的單調(diào)遞減區(qū)間為[kπ+ ,kπ+ ](k∈Z);
(Ⅱ)∵x∈ ,∴2x+ ∈[ , ],
∴sin(2x+ )∈[ ,1],
∴2sin(2x+ )∈[﹣1,2],
∴2sin(2x+ )+3∈[2,5],
∴函數(shù)的最大值和最小值分別為5,2.
【解析】(Ⅰ)由三角函數(shù)化簡可得f(x)=2sin(2x+ )+3,由周期公式可得,解不等式2kπ+ ≤2x+ ≤2kπ+ 可得單調(diào)遞減區(qū)間;(Ⅱ)由x∈ 結(jié)合三角函數(shù)的性質(zhì)逐步計(jì)算可得2sin(2x+ )+3∈[2,5],可得最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+ )=2 .
(1)求曲線C在極坐標(biāo)系中的方程;
(2)求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+2= ,且a1=1,a2=2.
(1)求a3﹣a6+a9﹣a12+a15的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 當(dāng)Sn>2017時(shí),求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點(diǎn),若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過其右焦點(diǎn)F且與x軸垂直的直線交橢圓C于P,Q兩點(diǎn),橢圓C的右頂點(diǎn)為R,且滿足.
(1)求橢圓C的方程;
(2)若斜率為k(其中)的直線l過點(diǎn)F,且與橢圓交于點(diǎn)A,B,弦AB的中點(diǎn)為M,直線OM與橢圓交于點(diǎn)C,D,求四邊形ACBD面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的上、下、左、右四個(gè)頂點(diǎn)分別為A,B,C,D,x軸正半軸上的點(diǎn)P滿足|PA|=|PD|=2,|PC|=4。
(I)求橢圓C的標(biāo)準(zhǔn)方程以及點(diǎn)P的坐標(biāo);
(II)過點(diǎn)P作直線l交橢圓C于點(diǎn)M,N,是否存在這樣的直線l使得△MNA和△MND的面積相等?若存在,請(qǐng)求出直線l的方程,若不存在,請(qǐng)說明理由;
(III)在(II)的條件下,求當(dāng)直線l的傾斜角為鈍角時(shí)△MND的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某漁業(yè)公司今年初用98萬元購進(jìn)一艘漁船用于捕撈,第一年需各種費(fèi)用12萬
元,從第二年開始包括維修費(fèi)在內(nèi),每年所需費(fèi)用均比上一年增加4萬元,該船每年捕撈的
總收入為50萬元.
(1)該船捕撈幾年開始盈利(即總收入減去成本及所有費(fèi)用之差為正值)?
(2)該船捕撈若干年后,處理方案有兩種:
①當(dāng)年平均盈利達(dá)到最大值時(shí),以26萬元的價(jià)格賣出;
②當(dāng)盈利總額達(dá)到最大值時(shí),以8萬元的價(jià)格賣出.問哪一種方案較為合算,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過原點(diǎn)O(0,0)且與直線y=2x﹣8相切于點(diǎn)P(4,0).
(1)求圓C的方程;
(2)已知直線l經(jīng)過點(diǎn)(4, 5),且與圓C相交于M,N兩點(diǎn),若|MN|=2,求出直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com