【題目】在平面直角坐標(biāo)系中,曲線的方程是: ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)設(shè)過(guò)原點(diǎn)的直線與曲線交于 兩點(diǎn),且,求直線的斜率.

【答案】(1);(2).

【解析】試題分析:

1將直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程可得曲線的極坐標(biāo)方程為.

2)法1:由圓的弦長(zhǎng)公式可得圓心到直線距離由幾何關(guān)系可得直線的斜率為.

2:設(shè)直線 為參數(shù)),與圓的直角坐標(biāo)方程聯(lián)立,利用直線參數(shù)的幾何意義可得直線的斜率為.

3:設(shè)直線 與圓的方程聯(lián)立,結(jié)合圓錐曲線的弦長(zhǎng)公式可得直線的斜率為.

4:設(shè)直線 ,結(jié)合弦長(zhǎng)公式可得圓心到直線距離利用點(diǎn)到直線距離公式解方程可得直線的斜率為.

試題解析:

1)曲線 ,即

, 代入得

曲線的極坐標(biāo)方程為.

2)法1:由圓的弦長(zhǎng)公式,得圓心到直線距離,

如圖,在中,易得,可知

直線的斜率為.

2:設(shè)直線 為參數(shù)),代入中得,整理得,

,即,

解得,從而得直線的斜率為.

3:設(shè)直線 ,代入中得

,即

,即,

解得直線的斜率為.

4:設(shè)直線 ,則圓心到直線的距離為,

由圓的弦長(zhǎng)公式,得圓心到直線距離,

所以,解得直線的斜率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時(shí)隨機(jī)選擇手心或手背其中一種手勢(shì),規(guī)定相同手勢(shì)人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求證:;

(Ⅱ)若對(duì)恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面是邊長(zhǎng)為2的菱形,,的中點(diǎn),平面,與平面所成的角的正弦值為

(1)在棱上求一點(diǎn),使平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,點(diǎn)是動(dòng)點(diǎn),且直線和直線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)直線與(1)中軌跡相切于點(diǎn),與直線相交于點(diǎn),判斷以為直徑的圓是否過(guò)軸上一定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn)

(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

時(shí)即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時(shí)甲乙兩人之間的距離;

(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲

乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的公差d0,則下列四個(gè)命題:

①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;

③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.

其中正確命題的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,ABC是等邊三角形,ABAD,CBCD,點(diǎn)PAC的中點(diǎn),記BPDABD的面積分別為,,二面角ABDC的大小為,

證明:(Ⅰ)平面ACD平面BDP

(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、(如圖②).在折起的過(guò)程中,則下列表述:

平面;

②四點(diǎn)、、、可能共面;

③若,則平面平面;

④平面與平面可能垂直.其中正確的是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案