分析:(Ⅰ)由a
1=0,a
n+1=a
n+2n可求得a
2、a
3、a
4;
(Ⅱ)由于a
n-a
n-1=2(n-1),(n≥2),可采用累加法得:a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…(a
2-a
1)+a
1,從而可求得a
n.
(Ⅲ)由(Ⅱ)可求得a
n=n
2-n,于是
bn=(+1)•2n=n•2
n,其前n項(xiàng)和S
n=1×2+2×2
2+3×2
3+…+n×2
n,①
2S
n=1×2
2+2×2
3+…+(n-1)×2
n+n×2
n+1,②將①②兩個(gè)式子利用錯(cuò)位相減法即可求得數(shù)列{b
n}的前n項(xiàng)和.
解答:解:(Ⅰ)由已知得a
2=a
1+2=2,a
3=a
2+4=6,a
4=a
3+6=12.
(Ⅱ)由已知得a
n+1-a
n=2n.所以a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1=
2(n-1)+2(n-2)+…+2==n2-n,
(Ⅲ)∵a
n=n
2-n,
∴
bn=(+1)•2n=n•2
n,
∴數(shù)列{b
n}前n項(xiàng)和S
n=1×2+2×2
2+3×2
3+…+n×2
n,①
2S
n=1×2
2+2×2
3+…+(n-1)×2
n+n×2
n+1,②
①-②得-S
n=2+2
2+2
3+…2
n-n×2
n+1
∴
-Sn=-n×2n+1,
∴S
n=2+(n-1)•2
n+1.
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查數(shù)列的“累加法”求和與“錯(cuò)位相減法”求和,屬于中檔題.