已知數(shù)列{an}中an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( 。
分析:該題需注意變量n的特殊性,根據(jù)函數(shù)的單調(diào)性可得an+1-an>0對(duì)于n∈N*恒成立,建立關(guān)系式,解之即可求出k的取值范圍.
解答:解:∵數(shù)列{an}中an=n2-kn(n∈N*),且{an}單調(diào)遞增
∴an+1-an>0對(duì)于n∈N*恒成立即(n+1)2-k(n+1)-(n2-kn)=2n+1-k>0對(duì)于n∈N*恒成立
∴k<2n+1對(duì)于n∈N*恒成立,即k<3
故選B.
點(diǎn)評(píng):本題主要考查了數(shù)列的性質(zhì),本題易錯(cuò)誤地求導(dǎo)或把它當(dāng)成二次函數(shù)來求解,注意n的取值是解題的關(guān)鍵,屬于易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=-10,且經(jīng)過點(diǎn)A(an,an+1),B(2n,2n+2)兩點(diǎn)的直線斜率為2,n∈N*
(1)求證數(shù)列{
an2n
}
是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=3n+4,若an=13,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1為由曲線y=
x
,直線y=x-2及y軸
所圍成圖形的面積的
3
32
Sn為該數(shù)列的前n項(xiàng)和,且Sn+1=an(1-an+1)+Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
對(duì)一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an對(duì)任意x∈N*恒成立,則實(shí)數(shù)λ的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案