已知直線y=k(x-2)(k>0)與拋物線y2=8x相交于A、B兩點,F(xiàn)為拋物線的焦點,若|FA|=2|FB|,則k的值為   
【答案】分析:先過A,B兩點分別作準線的垂線,再過B作AC的垂線,垂足分別為C,D,E,在直角三角形ABE中,求得cos∠BAE,進而可求直線AB的斜率
解答:解:∵直線y=k(x-2)(k>0)恒過定點(2,0)即為拋物線y2=8x的焦點F
過A,B兩點分別作準線的垂線,垂足分別為C,D,再過B作AC的垂線,垂足為E,
設|BF|=m,
∵|FA|=2|FB|,
∴|AF|=2m
∴AC=AF=2m,|BD|=|BF|=m
如圖,在直角三角形ABE中,AE=AC-BD=2m-m=m,AB=3m,
∴cos∠BAE=
∴直線AB的斜率為:k=tan∠BAE=2
故答案為2
點評:本題主要考查了拋物線的簡單性質(zhì)、共線向量及解三角形的知識,解答本題的關鍵是利用拋物線的定義作出直角三角形ABE,從而求得直線的斜率,體現(xiàn)了數(shù)形結(jié)合起來的思想
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A、B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則k=( 。
A、
1
3
B、
2
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
,有如下信息:聯(lián)立方程組
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當A=0時,該方程恒有一解;
(2)當A≠0時,△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
恒有公共點,則雙曲線離心率的取值范圍(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x-2)(k∈R)與雙曲線
x2
m
-
y2
8
=1
,某學生作了如下變形;由
y=k(x-2)
x2
m
-
y2
8
=1
消去y后得到形如關于x的方程ax2+bx+c=0.討論:當a=0時,該方程恒有一解;當a≠0時,b2>4ac恒成立,假設該學生的演算過程是正確的,則根據(jù)該學生的演算過程所提供的信息,求出實數(shù)m的取值范圍應為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)已知直線y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點,F(xiàn)為拋物線C的焦點,若|FA|=2|FB|,則k=( 。

查看答案和解析>>

同步練習冊答案