【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且點P在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)曲線的極坐標(biāo)方程為.若與交于兩點,求的值.
【答案】(1)a=,l的直角坐標(biāo)方程為x+y-2=0(2)
【解析】
(1)將點P的極坐標(biāo)代入直線l的極坐標(biāo)方程即可求得a的值,再直線l的極坐標(biāo)方程化為直角坐標(biāo)即可求解;(2)寫出直線的參數(shù)方程,將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義代入即可求解。
解析:(1)由點P在直線ρcos=a上,可得a=,
所以直線l的方程可化為ρcosθ+ρsinθ=2,從而l的直角坐標(biāo)方程為x+y-2=0.
(2)由ρcosθ=x,ρsinθ=y,
曲線的極坐標(biāo)方程為轉(zhuǎn)化為直角坐標(biāo)方程為
把曲線的參數(shù)方程為(為參數(shù)),代入得,
設(shè),是對應(yīng)的參數(shù),則,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知圓:(為參數(shù)),以為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程.
(1)分別寫出圓的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)圓與圓的公共弦的端點為,圓的圓心為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)求方程在上的解的集合;
(3)將函數(shù)的圖象向左平移個單位長度后得到函數(shù)的圖象,若在上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義一:對于一個函數(shù),若存在兩條距離為的直線和,使得時,恒成立,則稱函數(shù)在內(nèi)有一個寬度為的通道.
定義二:若一個函數(shù)對于任意給定的正數(shù),都存在一個實數(shù),使得函數(shù)在內(nèi)有一個寬度為的通道,則稱在正無窮處有永恒通道.
下列函數(shù)①;②;③;④;⑤. 其中在正無窮處有永恒通道的函數(shù)序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(I)求棱錐C-ADE的體積;
(II)求證:平面ACE⊥平面CDE;
(III)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在四棱錐中,底面是邊長為的正方形,側(cè)面底面,且,設(shè)、分別為、的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)計劃用兩張鐵絲網(wǎng)在一片空地上圍成一個梯形養(yǎng)雞場,,,已知兩段是由長為的鐵絲網(wǎng)折成,兩段是由長為的鐵絲網(wǎng)折成.設(shè)上底的長為,所圍成的梯形面積為.
(1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;
(2)當(dāng)x為何值時,養(yǎng)雞場的面積最大?最大面積為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com