如圖,已知點(diǎn)P是邊長(zhǎng)為1的正方形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,點(diǎn)E為PD中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求異面直線PB與AC所成的角的取值范圍.
分析:(1)連結(jié)BD交AC于O點(diǎn),連結(jié)EO,根據(jù)OE是三角形PBD的中位線可得EO∥PB,再利用直線和平面平行的判定定理證得 PB∥平面ACE.
(2)設(shè)PA=x,求得PB=PD=
x2+1
,AE=
1
2
PD=
x2+1
2
,OE=
1
2
PB=
x2+1
2
,可得△AEO為等腰三角形,且∠EAO=∠EOA.由此可得∠EOA即為異面直線PB與AC所成的角.取OA的中點(diǎn)M,在Rt△EMO中,求得cos∠EOA=
OM
OE
 的范圍,可得直線PB與AC所成的角的取值范圍.
解答:(1)證明:連結(jié)BD交AC于O點(diǎn),連結(jié)EO,
因?yàn)辄c(diǎn)E為PD中點(diǎn),點(diǎn)O為BD中點(diǎn),故OE是三角形PBD的中位線.
所以EO∥PB,又PB不在平面ACE上,
EO在平面ACE內(nèi),所以PB∥平面ACE. …(6分)
(2)解:設(shè)PA=x,則PB=PD=
x2+1

在Rt△PAD中,AE是其中線,AE=
1
2
PD=
x2+1
2
,
在△PBD中,OE是其中位線,OE=
1
2
PB=
x2+1
2
,
所以△AEO為等腰三角形,且∠EAO=∠EOA.…(8分)
∵EO∥PB,則∠EOA即為異面直線PB與AC所成的角.…(10分)
取OA的中點(diǎn)M,則EM⊥AO,在Rt△EMO中,
cos∠EOA=
OM
OE
=
2
4
x2+1
2
=
1
2
x2+1
,(x>0).
∵x2+1>1,∴cos∠EOA<
2
2
π
4
<∠EOA<
π
2
,
所以異面直線PB與AC所成的角的取值范圍是(
π
4
π
2
)
.…(12分)
點(diǎn)評(píng):本題主要考查直線和平面平行的判定定理的應(yīng)用,異面直線所成的角的定義和求法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某城市計(jì)劃在如圖所示的空地ABCD上豎一塊長(zhǎng)方形液晶廣告屏幕MNEF,宣傳該城市未來十年計(jì)劃、目標(biāo)等相關(guān)政策.已知四邊形ABCD是邊長(zhǎng)為30m的正方形,電源在點(diǎn)P處,點(diǎn)P到邊AD、AB的距離分別為9m,3m,且MN~NE=16~9,線段MN必過點(diǎn)P,端點(diǎn)M、N分別在邊AD、AB上,設(shè)AN=xm,液晶廣告屏幕MNEF的面積為Sm2
(1)求S關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)若液晶屏每平米造價(jià)為1500元,當(dāng)x為何值時(shí),液晶廣告屏幕MNEF的造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材全解 高中數(shù)學(xué) 必修1(人教A版) 人教A版 題型:044

如圖,已知正方形ABCD的邊長(zhǎng)為10,一動(dòng)點(diǎn)P從A出發(fā)沿正方形的邊運(yùn)動(dòng),路線是A→B→C→D→A,設(shè)點(diǎn)P經(jīng)過的路線長(zhǎng)為x,|AP|2=y(tǒng),試寫出y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:泰州2007-2008學(xué)年度第一學(xué)期期末考試高二數(shù)學(xué)試卷 題型:044

如圖,已知點(diǎn)P是邊長(zhǎng)為1的正方形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,點(diǎn)E為PD中點(diǎn).

(1)求證:PB∥平面EAC;

(2)求異面直線PB與AC所成的角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年江蘇省泰州市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)P是邊長(zhǎng)為1的正方形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,點(diǎn)E為PD中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求異面直線PB與AC所成的角的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案