【題目】如圖,在多面體中,四邊形為等腰梯形,,已知,,四邊形為直角梯形,,.

(1)證明:平面平面

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析(2)

【解析】分析:(1)通過取AD中點M,連接CM,利用,得到直角;再利用可得;而 , DE 平面ADEF,所以可得面面垂直。

(2)AD中點O建立空間直角坐標系,寫出各點坐標,求得平面CAE與直線BE向量,根據(jù)直線與法向量的夾角即可求得直線與平面夾角的正弦值。

詳解:(1)證明:取的中點,連接,,,

由四邊形為平行四邊形,可知,在中,有,.

,平面,

平面.

,,平面.

平面∴平面平面.

(2)解:由(1)知平面平面,如圖,取的中點為,建立空間直角坐標系,,,,

,,.

設平面的法向量

,即,

不妨令,得.

故直線與平面所成角的正弦值 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°, ,BC=1,P為△ABC內(nèi)一點,∠BPC=90°

(1)若 ,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解開展校園安全教育系列活動的成效對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結(jié)果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

[20,40)

[40,60)

[60,80)

[80,100]

頻數(shù)

6

a

24

b

(1)a,b,c的值;

(2)先用分層抽樣的方法從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,再從這10人中任選4,記所選4人的量化總分為ξ,ξ的分布列及數(shù)學期望E(ξ);

(3)某評估機構(gòu)以指標,其中表示的方差)來評估該校開展安全教育活動的成效.若0.7,則認定教育活動是有效的;否則認定教育活動無效,應調(diào)整安全教育方案.在(2)的條件下判斷該校是否應調(diào)整安全教育方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域為R,求實數(shù)m的取值范圍;
(2)若存在實數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, =λ.若CM∥平面AEF,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中)的圖象與軸的交點中,相鄰兩個交點之間的距離為, 且圖象上一個最低點為.

(1) 求函數(shù)的最小正周期和對稱中心;

(2) 將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的,再把所得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知函數(shù).

(Ⅰ)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(Ⅱ)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案