如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若=m+n,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩上動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
過橢圓Γ:=1(a>b>0)右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),F1為其左焦點(diǎn),已知△AF1B的周長為8,橢圓的離心率為.
(1)求橢圓Γ的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓Γ恒有兩個(gè)交點(diǎn)P,Q,且⊥?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C上的點(diǎn)(2,1)到兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點(diǎn)F作直線l與橢圓C分別交于A,B兩點(diǎn),其中點(diǎn)A在x軸下方,且=3.求過O,A,B三點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:方程表示焦點(diǎn)在軸上的雙曲線。命題曲線與軸交于不同的兩點(diǎn),若為假命題,為真命題,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)P(0,-1)是橢圓C1:=1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求當(dāng)△ABD的面積取最大值時(shí),直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,斜率為1的直線與橢圓C交于不同兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)設(shè)直線過點(diǎn)F(1,0),求線段的長;
(3)若直線過點(diǎn)(m,0),且以為直徑的圓恰過原點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,點(diǎn),過的直線交拋物線于兩點(diǎn).
(1)若,拋物線的焦點(diǎn)與中點(diǎn)的連線垂直于軸,求直線的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線過定點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com