如圖,點P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求當△ABD的面積取最大值時,直線l1的方程.
科目:高中數(shù)學 來源: 題型:解答題
動點到定點與到定直線,的距離之比為 .
(1)求的軌跡方程;
(2)過點的直線(與x軸不重合)與(1)中軌跡交于兩點、.探究是否存在一定點E(t,0),使得x軸上的任意一點(異于點E、F)到直線EM、EN的距離相等?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個頂點.
(1)設P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩上動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C1:+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設O為坐標原點,點A,B分別在橢圓C1和C2上,=2,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓M:=1(a>)的右焦點為F1,直線l:x=與x軸交于點A,若1=2 (其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過點. 過它的兩個焦點,分別作直線與,交橢圓于A、B兩點,交橢圓于C、D兩點,且.
(1)求橢圓的標準方程;
(2)求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設F1,F2分別是橢圓E:x2+=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com