【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且 =﹣
(1)求角B的大小;
(2)若a+c=2,SABC= ,求b的值.

【答案】
(1)解:在△ABC中,∵ =﹣ ,由正弦定理可得: =﹣

化為:2sinAcosB+sinCcosB+cosCsinB=0,

2sinAcosB+sin(C+B)=0,

∴2sinAcosB+sinA=0,

∵sinA≠0,

∴cosB=﹣ ,又B∈(0,π),∴B=


(2)解:∵ = ,

∴ac=1.

∴b2=a2+c2﹣2accosB=a2+c2+ac=(a+c)2﹣ac=3,


【解析】(1)利用正弦定理、和差公式即可得出;(2)利用三角形面積計(jì)算公式、余弦定理即可得出.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點(diǎn)M是PD的中點(diǎn),作ME⊥PC,交PC于點(diǎn)E.

(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A﹣PC﹣D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點(diǎn)A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( )
A.f(x)=|x|﹣4
B.y=
C.y=
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都是40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有一次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有一次命中的概率為(
A.0.25
B.0.2
C.0.35
D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對(duì)于函數(shù)y=f(x),其定義域?yàn)锳,值域?yàn)锽,則這個(gè)函數(shù)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體S﹣ABC中,若P為棱SC的中點(diǎn),那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設(shè)bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列(要指出首項(xiàng)、公比);
(2)若cn=nbn , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案