【題目】在正四面體S﹣ABC中,若P為棱SC的中點,那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.

【答案】A
【解析】解:取AC中點O,連結(jié)PO,BO,設(shè)正四面體S﹣ABC的棱長為2,
則PO∥SA,且PO= SA=1,BO=BP= = ,
∴∠BPO是異面直線PB與SA所成的角,
cos∠BPO= = =
∴異面直線PB與SA所成的角的余弦值為
故選:A.

【考點精析】利用異面直線及其所成的角對題目進行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,曲線y=f(x)在點(2,f(2))處的切線方程為7x﹣4y﹣12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且 =﹣
(1)求角B的大。
(2)若a+c=2,SABC= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線x2=4y的焦點F作直線AB,CD與拋物線交于A,B,C,D四點,且AB⊥CD,則 + 的最大值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正數(shù)數(shù)列{xn}滿足x1= ,xn+1= ,n∈N*
(1)求x2 , x4 , x6
(2)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標(biāo);
(2)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng) 時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ex , g(x)=x+1.
(1)證明:f(x)≥g(x);
(2)求y=f(x),y=g(x)與x=﹣1所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=esinx+e﹣sinx(x∈R),則下列說法不正確的是( )
A.f(x)為R上偶函數(shù)
B.π為f(x)的一個周期
C.π為f(x)的一個極小值點
D.f(x)在區(qū)間 上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C所對的邊,角C是鈍角,且sinB= . (Ⅰ)求角C的值;
(Ⅱ)若b=2,△ABC的面積為 ,求c的值.

查看答案和解析>>

同步練習(xí)冊答案