【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 為PD的中點(diǎn).
(1)求異面直線BD與PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.
【答案】
(1)解:∵PA⊥平面ABCD,AB平面ABCD,AD平面ABCD,
∴PA⊥AB,PA⊥AD.又AD⊥AB,如圖,以AB,AD,AP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系.
根據(jù)條件得AD= ,∴B(1,0,0),D(0, ,0),C ,P(0,0,2),
則 =(﹣1, ,0), = .
設(shè)異面直線BD,PC所成的角為θ,
則cos θ=|cos< >|= = = .
即異面直線BD與PC所成角的余弦值為 .
(2)解:設(shè)平面AMC的一個法向量為n1=(x1,y1,z1), ,
則n1⊥ ,∴n1 =(x1,y1,z1) = ,
又n1⊥ ,∴n1 =(x1,y1,z1) = ,
取y1=- ,得x1=2,z1= ,故n1=(2,- , ),
同理可得平面BMC的一個法向量n2=(1, , ),
∵cos<n1,n2>= ,
∴二面角A﹣MC﹣D的平面角的余弦值為 .
【解析】(1)建立空間直角坐標(biāo)系,利用向量的夾角公式即可得出異面直線所成的角.(2)利用法向量的性質(zhì)、線面垂直的性質(zhì)、向量的夾角公式即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關(guān)知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:f(x)=2 cos2x+sin2x﹣ +1(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的單調(diào)增區(qū)間;
(3)若x∈[﹣ , ]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為整數(shù)的數(shù)列{an}滿足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N* .
(1)若m=1,n=2,寫出所有滿足條件的數(shù)列{an};
(2)設(shè)滿足條件的{an}的個數(shù)為f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,試求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某影院為了宣傳影片《戰(zhàn)狼Ⅱ》,準(zhǔn)備采用以下幾種方式來擴(kuò)大影響,吸引市民到影院觀看影片,根據(jù)以往經(jīng)驗(yàn),預(yù)測:
①分發(fā)宣傳單需要費(fèi)用1.5萬元,可吸引30%的市民,增加收入4萬元;
②網(wǎng)絡(luò)上宣傳,需要費(fèi)用8千元,可吸引20%的市民,增加收入3萬元;
③制作小視頻上傳微信群,需要費(fèi)用2.5萬元,可吸引35%的市民,增加收入5.5萬元;
④與商場合作需要費(fèi)用1萬元,購物滿800元者可免費(fèi)觀看影片(商場購票),可吸收15%的市民,增加收入2.5萬元,
問: (1)在三個觀看影片的市民中,至少有一個是通過微信群宣傳方式吸引來的概率是多少?
(2)影院預(yù)計可增加盈利是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],若關(guān)于t的方程( )|t|+m+1=0(t∈R)有實(shí)數(shù)解,則m+n的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某險種的基本保費(fèi)為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,
續(xù)保人本年度的保費(fèi)與其上年度出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
保費(fèi) |
隨機(jī)調(diào)查了該險種的400名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
頻數(shù) | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.求的估計值;
(Ⅱ)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的190%”.
求的估計值;
(III)求續(xù)保人本年度的平均保費(fèi)估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③ >0;
④ .
當(dāng)f(x)=lgx時,上述結(jié)論中正確結(jié)論的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com