【題目】定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當x<0時,f(x)>0恒成立,且nf(x)=f(nx).(n是一個給定的正整數(shù)).
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-2,5]上總有f(x)≤10成立,試確定f(1)應(yīng)滿足的條件;
(3)當a<0時,解關(guān)于x的不等式.
【答案】(1)見解析;(2)f(1)[-5,0);(3)見解析
【解析】
(1)利用函數(shù)奇偶性的定義,結(jié)合抽象函數(shù)關(guān)系,利用賦值法進行證明
(2)結(jié)合函數(shù)單調(diào)性的定義以及最值函數(shù)成立問題進行證明即可
(3)利用抽象函數(shù)關(guān)系,結(jié)合函數(shù)奇偶性和單調(diào)性定義轉(zhuǎn)化為一元二次不等式,討論參數(shù)的范圍進行求解即可
(1)f(x)為奇函數(shù),證明如下;
由已知對于任意實數(shù)x,y都有f(x+y)=f(x)+f(y)恒成立.
令x=y=0,得f(0+0)=f(0)+f(0),所以f(0)=0.
令y=-x,得f(x-x)=f(x)+f(-x)=0.
所以對于任意x,都有f(-x)=-f(x).
所以f(x)是奇函數(shù).
(2)設(shè)任意x1,x2且x1<x2,則x2-x1>0,由已知f(x2-x1)<0,
又f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0,得f(x2)<f(x1),
根據(jù)函數(shù)單調(diào)性的定義和奇函數(shù)的性質(zhì)知f(x)在(-∞,+∞)上是減函數(shù).
所以f(x)在[-2,5]上的最大值為f(-2).
要使f(x)≤10恒成立,當且僅當f(-2)≤10,
又因為f(-2)=-f(2)=-f(1+1)=-2f(1),所以f(1)≥-5.
又x>1,f(x)<0,所以f(1)∈[-5,0).
(3)∵.,
∴f(ax2)-f(a2x)>n2[f(x)-f(a)].
所以f(ax2-a2x)>n2f(x-a),
所以f(ax2-a2x)>f[n2(x-a)],
因為f(x)在(-∞,+∞)上是減函數(shù),
所以ax2-a2x<n2(x-a).
即(x-a)(ax-n2)<0,
因為a<0,所以(x-a)(x)>0.
討論:
①當a<<0,即a<-n時,原不等式的解集為{x|x>或x<a};
②當a=,即a=-n時,原不等式的解集為{x|x≠-n};
③當<a<0,即-n<a<0
科目:高中數(shù)學 來源: 題型:
【題目】下表是最近十屆奧運會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當屆
獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù):
年份 | 1972 | 1976 | 1980 | 1984 | 1988 | 1992 | 1996 | 2000 | 2004 | 2008 |
屆別 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
主辦國家 | 聯(lián)邦 德國 | 加拿大 | 蘇聯(lián) | 美國 | 韓國 | 西班牙 | 美國 | 澳大 利亞 | 希臘 | 中國 |
上屆金牌數(shù) | 5 | 0 | 49 | 未參加 | 6 | 1 | 37 | 9 | 4 | 32 |
當界金牌數(shù) | 13 | 0 | 80 | 83 | 12 | 13 | 44 | 16 | 6 | 51 |
某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運會之間的關(guān)系,
(1)求出主辦國在上屆所獲金牌數(shù)(設(shè)為)與在當屆所獲金牌數(shù)(設(shè)為)之間的線性回歸方程
其中
(2)在2008年第29屆北京奧運會上日本獲得9塊金牌,則據(jù)此線性回歸方程估計在2020 年第 32 屆東
京奧運會上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)和在的圖象如圖所示:
給出下列四個命題:
(1)方程有且僅有6個根;
(2)方程有且僅有3個根;
(3)方程有且僅有5個根;
(4)方程有且僅有4個根.
其中正確命題的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為準備參加市運動會,對本校高一、高二兩個田徑隊中30名跳高運動員進行了測試,并用莖葉圖表示出本次測試30人的跳高成績(單位:cm).跳高成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下定義為“不合格”.
(1)如果從所有運動員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運動員中選取2名,用X表示所選運動員來自高一隊的人數(shù),試寫出X的分布圖,并求X的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列(n∈N*)
(1)求a2 , a3 , a4及b2 , b3 , b4;由此歸納出{an},{bn}的通項公式,并證明你的結(jié)論.
(2)若cn=log2(),Sn=c1+c2+…+cn , 試問是否存在正整數(shù)m,使Sm≥5,若存在,求最小的正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2x﹣)x,則下列結(jié)論中正確的是( )
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB= .
證明:平面ADE⊥平面ACD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求,的值;
(2)證明:是區(qū)間上的減函數(shù);
(3)若,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com