設(shè)動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ(如圖所示),那么點P的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:首先利用余弦定理寫出d1和d2的等量關(guān)系式,然后把它變形為(d1-d22=*的形式,即|d1-d2|=*的形式,此時滿足雙曲線的定義,則問題得解.
解答: 解:在△PAB中,|AB|=2,即22=d12+d22-2d1d2cos2θ,4=(d1-d22+4d1d2sin2θ,
所以|d1-d2|=2
1-λ
<2(常數(shù)),
所以點P的軌跡C是以A,B為焦點,實軸長2a=2
1-λ
的雙曲線.
故選:C.
點評:本題考查雙曲線的定義、標準方程,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x-4cosx+2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,3),B(3,x),若向量
a
=(-2,x)與
AB
垂直,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
log5(5x-4)
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,A是△BCD所在平面外一點,M,N分別是△ABC和△ACD的重心,若∠BCD=90°,BC=10,CD=8,則MN=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
m
+
y2
n
=1的離心率為3,有一個焦點與拋物線y=
1
12
x2的焦點相同,那么雙曲線的漸近線方程為(  )
A、2
2
x±y=0
B、x±2
2
y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x4+ax-4=0的各個實根x1,x2,…,xk(k≤4)所對應(yīng)的點i(i=1,2,…,k)均在直線y=x的同側(cè),則實數(shù)a的取值范圍是( 。
A、R
B、∅
C、(-6,6)
D、(-∞,-6)∪(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),那么下列說法正確的是( 。
A、若f′(x0)=0,則x0是函數(shù)f(x)的極值點
B、若x0是函數(shù)f(x)的極值點,則f′(x0)=0
C、若x°是函數(shù)f(x)的極值點,則f′(x0)可能不存在
D、若f′(x0)=0無實根,則函數(shù)f(x)必?zé)o極值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=x|x|,則f(x)( 。
A、只有最大值
B、只有最小值
C、既有最大值,又有最小值
D、既無最大值,又無最小值

查看答案和解析>>

同步練習(xí)冊答案